between 1 and 8 we have 2 and 4 intervening; and between 1 and 27 there lie 3 and 9. Therefore we conclude that unity is the only infinite number. These are some of the marvels which our imagination cannot grasp and which should warn us against the serious error of those who attempt to discuss the infinite by assigning to it the same properties which we employ for the finite, the natures of the two having nothing in common.
With regard to this subject I must tell you of a remarkable property which just now occurs to me and which will explain the vast alteration and change of character which a finite quantity would undergo in passing to infinity. Let us draw the straight line AB of arbitrary length and let the point C divide it into two unequal parts; then I say that, if pairs of lines be drawn, one from each of the terminal points A and B, and if the ratio between the lengths of these lines is the same as that between AC and CB, their points of intersection will all lie upon the circumference of one and the same circle. Thus, for example,
[84]
AL and BL drawn from A and B, meeting at the point L, bearing to one another the same ratio as AC to BC, and the
An image should appear at this position in the text. To use the entire page scan as a placeholder, edit this page and replace "{{missing image}}" with "{{raw image|Dialogues Concerning Two New Sciences (1914).djvu/66}}". Otherwise, if you are able to provide the image then please do so. For guidance, see Wikisource:Image guidelines and Help:Adding images. |
Fig. 7
pair AK and BK meeting at K also bearing to one another the same ratio, and likewise the pairs AI, BI, AH, BH, AG, BG, AF, BF, AE, BE, have their points of intersection L, K, I, H, G, F, E, all lying upon the circumference of one and the same circle. Accordingly if we imagine the point C to move continuously in such a manner that the lines drawn from it to the fixed terminal points, A and B, always maintain the same ratio between their lengths as exists between the original parts, AC and CB, then the point C will, as I shall presently prove, describe a circle. And the circle thus described will
increase