Page:EB1911 - Volume 01.djvu/547

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
ALBINO
507

the pigment patches or at their borders. In the mouse, ten such centres may be distinguished, arranged symmetrically five on either side of the median plane—a cheek patch, neck patch, shoulder patch, side patch and rump patch. Various degrees in the reduction of the pigment patches up to that of complete elimination may be traced.

Some animals are wholly pigmented during the summer and autumn, but through the winter and spring they are in the condition of extreme partial albinism and become almost complete albinoes. Such instances are found in the Scotch blue hare (Lepus timidus), in the Norway hare, in the North American hare (L. americanus), in the arctic fox (Canis lagopus), in the stoat and ermine, and among birds, in the ptarmigan, and some other species of Lagopus. How the change from the autumnal to the winter condition takes place appears not to be definitely settled in all cases, and accurate observations are much to be desired. In the case of the Norway hare, it has been stated that a general moult, including all the hairs and under fur, takes place and new white hairs are substituted. The process of moulting is said to begin in the middle of autumn and is completed before the end of December, by which time the fur is in its winter condition, and is closer, fuller and longer than in summer (Naturalists’ Library, vol. vii.). On the other hand, it has been stated that during the whole of the transformation in the fur no hairs fall from the animal, and it is attributed to an actual change in the colour of the hair (Edinburgh Philosophical Journal, vol. xi. p. 191). In the case of the American hare, however, some very careful observations have been made by F. H. Welch. In this animal the long hairs (which form the pile) become white at their extremities, and in some of them this whiteness extends through their whole length. At the same time, new hairs begin to develop and to grow rapidly, and soon outstrip the hairs of the autumn pile. From their first appearance these new hairs are white and stiff, and they are confined to the sides and back of the body. It is not clear from Welch’s account what is the cause of the whiteness of the tips of the hairs of the autumn coat, but his figures suggest that it is due to the development of gas in the interspaces between the keratin bridges and trabeculae of the hairs. There is nothing to show whether the pigment persists or is absorbed. Probably it persists. In this event, the whiteness of the tips will be due to the scattering or irregular reflexion of the incident rays of light from the surface of the numerous gas bubbles. In the case of the ptarmigan the evidence is clear that the existing autumnal feathers do change, more or less completely, to white. But the evidence is not conclusive as to whether any part of the winter condition is additionally produced by moulting.

The condition of albinism thus assumed as a seasonal variation is never complete, for the eyes at least retain their pigmented state. The reason of this is readily understood when it is borne in mind how disadvantageous to the function of sight is the unpigmented condition of an albino’s eyeball; a disadvantage which would be probably much accentuated, in the cases now under consideration, by the bright glare from the surface of the snow, which forms the natural environment of these animals at the particular period of the year when the winter change occurs. In some cases, as in all the varying hares, in addition to the eyes retaining their normal pigmentation, areas similar in extent and situation to those on the Himalayan rabbits also retain their pigmentation; and in the ptarmigan there is a black band on each side of the head stretching forwards and backwards from the eyeball, and the outer tail feathers are black.

Albinism is restricted to no particular class of the animal kingdom; for partial albinism at least is known to occur in Coelentera, worms, Crustacea, Myriapoda, Coleoptera, Arachnida and fishes. The individuals in which this diminished pigmentation is found are for the most part those living in caves, and it is probable that their condition is not truly albinotic, but only temporary and due to the absence of the stimulus of light. This may be also true of some of those instances that have occurred among frogs, in Proteus, and with an axolotl once possessed by the present writer. This latter animal was quite white, with the exception of the black eyeballs. At the end of four weeks after it was first purchased the dorsal or upper surface of its external gills developed a small amount of dark pigment. Within the next few weeks this increased in quantity and the dorsal surface of the head and of the front end of the trunk began to be pigmented. The animal died at the end of the eighth week, but it is possible that had it lived it would have become wholly pigmented. But, apart from these instances, albinism is known, according to W. E. Castle, who cites it on the authority of Hugh M. Smith, to occur among a breed of albino trout, which breed true and are reared in the State fish-hatcheries of America. With birds and mammals, however, there is no doubt that complete albino individuals do occur; and among species which, like the jackdaw, certain deer and rabbits, are normally deeply pigmented.

Albinism occurs in all races of mankind, among mountainous as well as lowland dwellers. And, with man, as with other animals, it may be complete or partial. Instances of the latter condition are very common among the negroes of the United States and of South America, and in them assumes a piebald character, irregular white patches being scattered over the general black surface of the body. Occasionally the piebald patches tend to be symmetrically arranged, and sometimes the eyeballs are pigmentless (pink) and sometimes pigmented (black).

According to A. R. Gunn, of Edinburgh University, who has recently been investigating the subject of albinism in man, there is reason to believe that a condition of piebald albinism occurs also in Europeans (Scotsmen). He has examined subjects in which the whole of the hair of the body is white, but the eyeballs are pigmented, often deeply; and, conversely, he has seen cases in which the eyes are pink but the hair is pigmented. The hair and the eyes may be regarded as skin patches, in which sometimes the one and sometimes the other is pigmentless. He believes that, were it not for the generally very pale colour of white-skinned races, this piebald condition would be as manifest in them as in negroes, over the whole surface of the body.

In complete human albinoes, albinism is correlated, in addition to nystagmus, with a peculiar roughness of the skin, making it harsh to the touch. The skin is also milky-white in appearance.

According to C. J. Seligmann, there exists among the Papuans an albinotic race whose skin varies in colour from a pink-white to that of café au lait; the eyes are generally greenish, hazel or brown, and the hair is tow-coloured. The skin where unexposed is pinker than that of a normal North European. Like complete albinoes, this race suffers from photophobia, and is characterized by the albinotic facies.

Before we can inquire into the cause and meaning of albinism it will be necessary first to consider the nature Of pigmentation. It has recently been ascertained that the coloration of certain sponges is due to the interaction of an oxydizing ferment, tyrosinase, upon certain colourless chromogenic substances. In 1901, Otto v. Furth and Hugo Schneider showed that a tyrosinase could be obtained from the blood of certain insects, and, acting upon a chromogen present in the blood, converted it into a pigmentary substance of melanin-like nature. Hans Przibram also extracted a tyrosinase from the ink-sac of Sepia, and, causing it to act upon a watery solution of tyrosin, obtained a black pigment. From the blood of Bombyx mori, V. von Ducceshi has also obtained a tyrosinase.

Subsequently (1903) L. Cuénot, in order to explain certain features in the hereditary transmission of coat colour in mice, postulated the hypothesis that the grey colour of the wild mouse (which is known to be a compound of black, chocolate and yellow pigments) may be due either to the interaction of a single ferment and three chromogens, or vice versa, to one chromogenic substance and three ferments.

Since then (1904) Miss Florence Durham has shown that if the skins of young or embryonic mammals (rats, rabbits and guinea-pigs) be ground up and extracted in water, and the expressed juice be then incubated with solid tyrosin for twenty-four hours, with the addition of a very small amount of ferrous