their authority. If this view be accepted, an entirely new light is thrown on the achievements of the Arabs in the history of chemistry. Gibbon asserts that the Greeks were inattentive either to the use or to the abuse of chemistry (Decline and Fall, chap. xiii.), and gives the Arabs the credit of the origin and improvement of the science (chap. lii.).[1] But the chemical knowledge attributed to the Arabs has been so attributed largely on the basis of the contents of the Latin Geber, regarded as a translation from the Arabic Jaber. If, then, those contents do not represent the knowledge of Jaber, and if the contents of other Latin translations which there is reason to believe are really made from the Arabic, show little, if any, advance on the knowledge of the Alexandrian Greeks, evidently the part played by the Arabs must be less, and that of the Westerns greater, than Gibbon is prepared to admit.
The descent of alchemistical doctrine can thus be traced with fair continuity for a thousand years, from the Greeks of Alexandria down to the time when Latin alchemy was firmly established in the West, and began to be written of by historical authors like Albertus Magnus, Roger Bacon and Arnoldus Villanovanus in the 13th century. But side by side with this literary transmission Berthelot insists that there was another mode of transmission, by means of the knowledge of practical receipts and processes traditional among jewellers, painters, workers in glass and pottery, and other handicraftsmen. The chemical knowledge of Egyptian metallurgists and jewellers, he holds, was early transmitted to the artisans of Rome, and was preserved throughout the dark ages in the workshops of Italy and France until about the 13th century, when it was mingled with the theories of the Greek alchemists which reached the West by way of the Arabs. Receipts given in the Leiden papyrus reappear in the Compositiones ad Tingenda and the Mappae Clavicula, both workshop receipt books, one known in an 8th-century MS. at Lucca, and the other in a 10th-century MS. in the library of Schlettstadt; and again in such works as the De Artibus Romanorum of Eraclius and the Schedula Diversarum Artium of Theophilus, belonging to the 11th or 12th century.
Theory of Transmutation.—The fundamental theory of the transmutation of metals is to be found in the Greek alchemists, although in details it was modified and elaborated by the Arabs and the Latin alchemists. Regarding all substances as being composed of one primitive matter—the prima materia, and as owing their specific differences to the presence of different qualities imposed upon it, the alchemist hoped, by taking away these qualities, to obtain the prima materia itself, and then to get from it the particular substance he desired by the addition of the appropriate qualities. The prima materia was early identified with mercury, not ordinary mercury, but the “mercury of the philosophers,” which was the essence or soul of mercury, freed from the four Aristotelian elements—earth, air, fire and water—or rather from the qualities which they represent. Thus the operator had to remove from ordinary mercury, earth or an earthy principle or quality, and water or a liquid principle, and to fix it by taking away air or a volatile principle. The prima materia thus obtained had to be treated with sulphur (or with sulphur and arsenic) to confer upon it the desired qualities that were missing. This sulphur again was not ordinary sulphur, but some principle derived from it, which constituted the philosopher’s stone or elixir—white for silver and yellow or red for gold. This is briefly the doctrine that the metals are composed of mercury and sulphur, which persisted in one form or another down to the 17th century. Of course there were numerous variations and refinements. Thus in the Speculum Naturale of Vincent of Beauvais (c. 1250) it is said that there are four four spirits—mercury, sulphur, arsenic and sal ammoniac—and six bodies—gold, silver, copper, tin, lead and iron.[2] Of these bodies the two first are pure, the four last impure. Pure white mercury, fixed by the virtue of white non-corrosive sulphur, engenders in mines a matter which fusion changes into silver, and united to pure clear red sulphur it forms gold, while with various kinds of impure mercury and sulphur the other bodies are produced. Vincent attributes to Rhazes the statement that copper is potentially silver, and any one who can eliminate the red colour will bring it to the state of silver, for it is copper in outward appearance, but in its inmost nature silver. This statement represents a doctrine widely held in the 13th century, and also to be found in the Greek alchemists, that everything endowed with a particular apparent quality possesses a hidden opposite quality, which can be rendered apparent by fire. Later, as in the works attributed to Basil Valentine, sulphur, mercury and salt are held to be the constituents of the metals.
It must be noted that the processes described by the alchemists of the 13th century are not put forward as being miraculous or supernatural; they rather represent the methods employed by nature, which it is the end of the alchemist’s art to reproduce artificially in the laboratory. But even among the late Arabian alchemists it was doubted whether the resources of the art were adequate to the task; and in the West, Vincent of Beauvais remarks that success had not been achieved in making artificial metals identical with the natural ones. Thus he says that the silver which has been changed into gold by the projection of the red elixir is not rendered resistant to the agents which affect silver but not gold, and Albertus Magnus in his De Mineralibus—the De Alchemia attributed to him is spurious—states that alchemy cannot change species but merely imitates them—for instance, colours a metal white to make it resemble silver or yellow to give it the appearance of gold. He has, he adds, tested gold made by alchemists, and found that it will not withstand six or seven exposures to fire. But scepticism of this kind was not universal. Roger Bacon—or more probably some one who usurped his name—declared that with a certain amount of the philosopher’s stone he could transmute a million times as much base metal into gold, and on Raimon Lull was fathered the boast, “Mare tingerem si mercurius esset.” Numerous less distinguished adepts also practised the art, and sometimes were so successful in their deceptions that they gained the ear of kings, whose desire to profit by the achievements of science was in several instances rewarded by an abundant crop of counterfeit coins.
Later History of Alchemy.—In the earlier part of the 16th century Paracelsus gave a new direction to alchemy by declaring that its true object was not the making of gold but the preparation of medicines, and this union of chemistry with medicine was one characteristic of the iatrochemical school of which he was the precursor. Increasing attention was paid to the investigation of the properties of substances and of their effects on the human body, and chemistry profited by the fact that it passed into the hands of men who possessed the highest scientific culture of the time, Still, belief in the possibility of transmutation long remained orthodox, even among the most distinguished men of science. Thus it was accepted, at least academically, by Andreas Libavius (d. 1616); by F. de la Boë Sylvius (1614–1672), though not by his pupil Otto Tachenius, and by J. R. Glauber (1603–1668); by Robert Boyle (1627–1691) and, for a time at least, by Sir Isaac Newton and his rival and
- ↑ “Some traditionary knowledge might be secreted in the temples and monasteries of Egypt: much useful experience might have been acquired in the practice of arts and manufactures, but the science of chemistry owes its origin and improvement to the industry of the Saracens. They first invented and named the alembic for the purposes of distillation, analyzed the substances of the three kingdoms of nature, tried the distinction and affinities of alkalis and acids, and converted the poisonous minerals into soft salutary remedies. But the most eager search of Arabian chemistry was the transmutation of metals, and the elixir of immortal health: the reason and the fortunes of thousands were evaporated in the crucibles of alchemy, and the consummation of the great work was promoted by the worthy aid of mystery, fable and superstition.” It may be noted that the word “alembic” is derived from the Greek ἄμβιξ, “cup,” with the Arabic article prefixed and that the instrument is figured in the MSS. of some of the Greek alchemists.
- ↑ Cf. Chaucer, Chanouns Yemannes Tale, where, however, mercury figures both as a spirit and a body:—
“The firste spirit quik-silver called is,
The second orpiment, the thridde ywis
Sal armoniak, and the ferthe brimstoon.”