dicotyledonous plants. The advent in 1851 of Hofmeister’s brilliant discovery of the changes proceeding in the embryo-sac of flowering plants, and his determination of the correct relationships of these with the Cryptogamia, fixed the true position of Gymnosperms as a class distinct from Dicotyledons, and the term Angiosperm then gradually came to be accepted as the suitable designation for the whole of the flowering plants other than Gymnosperms, and as including therefore the classes of Dicotyledons and Monocotyledons. This is the sense in which the term is nowadays received and in which it is used here.
The trend of the evolution of the plant kingdom has been in the direction of the establishment of a vegetation of fixed habit and adapted to the vicissitudes of a life on land, and the Angiosperms are the highest expression of this evolution and constitute the dominant vegetation of the earth’s surface at the present epoch. There is no land-area from the poles to the equator, where plant-life is possible, upon which Angiosperms are not found. They occur also abundantly in the shallows of rivers and fresh-water lakes, and in less number in salt lakes and in the sea; such aquatic Angiosperms are not, however, primitive forms, but are derived from immediate land-ancestors. Associated with this diversity of habitat is great variety in general form and manner of growth. The familiar duckweed which covers the surface of a pond consists of a tiny green “thalloid” shoot, one, that is, which shows no distinction of parts—stem and leaf, and a simple root growing vertically downwards into the water. The great forest-tree has a shoot, which in the course perhaps of hundreds of years, has developed a wide-spreading system of trunk and branches, bearing on the ultimate twigs or branchlets innumerable leaves, while beneath the soil a widely-branching root-system covers an area of corresponding extent. Between these two extremes is every conceivable gradation, embracing aquatic and terrestrial herbs, creeping, erect or climbing in habit, shrubs and trees, and representing a much greater variety than is to be found in the other subdivision of seed-plants, the Gymnosperms.
In internal structure also the variety of tissue-formation far exceeds that found in Gymnosperms (see Plants: Anatomy). The vascular bundles of the stem belong to the collateral type, that is to say, the elements of the wood or xylem and the bast or phloem stand side by side on the Internal structure.same radius. In the larger of the two great groups into which the Angiosperms are divided, the Dicotyledons, the bundles in the very young stem are arranged in an open ring, separating a central pith from an outer cortex. In each bundle, separating the xylem and phloem, is a layer of meristem or active formative tissue, known as cambium; by the formation of a layer of cambium between the bundles (interfascicular cambium) a complete ring is formed, and a regular periodical increase in thickness results from it by the development of xylem on the inside and phloem on the outside. The soft phloem soon becomes crushed, but the hard wood persists, and forms the great bulk of the stem and branches of the woody perennial. Owing to differences in the character of the elements produced at the beginning and end of the season, the wood is marked out in transverse section into concentric rings, one for each season of growth—the so-called annual rings. In the smaller group, the Monocotyledons, the bundles are more numerous in the young stem and scattered through the ground tissue. Moreover they contain no cambium and the stem once formed increases in diameter only in exceptional cases.
As in Gymnosperms, branching is monopodial; dichotomy or the forking of the growing point into two equivalent branches which replace the main stem, is absent both in the case of the stem and the root. The leaves show a remarkable variety in form (seeVegetative organs. ), but are generally small Leafin comparison with the size of the plant; exceptions occur in some Monocotyledons, e.g. in the Aroid family, where in some genera the plant produces one huge, much-branched leaf each season.
In rare cases the main axis is unbranched and ends in a flower, as, for instance, in the tulip, where scale-leaves, forming the underground bulb, green foliage-leaves and coloured floral leaves are borne on one and the same axis. Generally, flowers are formed only on shoots of a higher order, often only on the ultimate branches of a much branched system. A potential branch or bud, either foliage or flower, is formed in the axil of each leaf; sometimes more than one bud arises, as for instance in the walnut, where two or three stand in vertical series above each leaf. Many of the buds remain dormant, or are called to development under exceptional circumstances, such as the destruction of existing branches. For instance, the clipping of a hedge or the lopping of a tree will cause to develop numerous buds which may have been dormant for years. Leaf-buds occasionally arise from the roots, when they are called adventitious; this occurs in many fruit trees, poplars, elms and others. For instance, the young shoots seen springing from the ground around an elm are not seedlings but root-shoots. Frequently, as in many Dicotyledons, the primary root, the original root of the seedling, persists throughout the life of the plant, forming, as often in biennials, a thickened tap-root, as in carrot, or in perennials, a much-branched root system. In many Dicotyledons and most Monocotyledons, the primary root soon perishes, and its place is taken by adventitious roots developed from the stem.
The most characteristic feature of the Angiosperm is the flower, which shows remarkable variety in form and elaboration, and supplies the most trustworthy characters for the distinction of the series and families or natural orders, into which the group is divided. The flower is a shoot (stem Flower.bearing leaves) which has a special form associated with the special function of ensuring the fertilization of the egg and the development of fruit containing seed. Except where it is terminal it arises, like the leaf-shoot, in the axil of a leaf, which is then known as a bract. Occasionally, as in violet, a flower arises singly in the axil of an ordinary foliage-leaf; it is then termed axillary. Generally, however, the flower-bearing portion of the plant is sharply distinguished from the foliage leaf-bearing or vegetative portion, and forms a more or less elaborate branch-system in which the bracts are small and scale-like. Such a branch-system is called an inflorescence. The primary function of the flower is to bear the spores. These, as in Gymnosperms, are of two kinds, microspores or pollen-grains, borne in the stamens (or microsporophylls) and megaspores, in which the egg-cell is developed, contained in the ovule, which is borne enclosed in the carpel (or megasporophyll). The flower may consist only of spore-bearing leaves, as in willow, where each flower comprises only a few stamens or two carpels. Usually, however, other leaves are present which are only indirectly concerned with the reproductive process, acting as protective organs for the sporophylls or forming an attractive envelope. These form the perianth and are in one series, when the flower is termed monochlamydeous, or in two series (dichlamydeous). In the second case the outer series (calyx of sepals) is generally green and leaf-like, its function being to protect the rest of the flower, especially in the bud; while the inner series (corolla of petals) is generally white or brightly coloured, and more delicate in structure, its function being to attract the particular insect or bird by agency of which pollination is effected. The insect, &c., is attracted by the colour and scent of the flower, and frequently also by honey which is secreted in some part of the flower. (For further details on the form and arrangement of the flower and its parts, see Flower.)
Each stamen generally bears four pollen-sacs (microsporangia) which are associated to form the anther, and carried up on a stalk or filament. The development of the microsporangia and the contained spores (pollen-grains) is closely comparable with that of the microsporangia Stamen
and pollen.in Gymnosperms or heterosporous ferns. The pollen is set free by the opening (dehiscence) of the anther, generally by means of longitudinal slits, but sometimes by pores, as in the heath family (Ericaceae), or by valves, as in the barberry. It is then dropped or carried by some external agent, wind, water or some member of the animal kingdom, on to the receptive surface of