Page:EB1911 - Volume 02.djvu/695

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
ARSENIC
653


a crystalline mass of meta-arsenic acid, HAsO3. These latter two acids are only stable in the solid state; they dissolve readily in water with evolution of heat and immediate transformation into the ortho-arsenic acid. The salts of arsenic acid, termed arsenates, are isomorphous with the phosphates, and in general character and reactions resemble the phosphates very closely; thus both series of salts give similar precipitates with “magnesia mixture” and with ammonium molybdate solution, but they can be distinguished by their behaviour with silver nitrate solution, arsenates giving a reddish-brown precipitate, whilst phosphates give a yellow precipitate.

There are three known compounds of arsenic and sulphur, namely, realgar As2S2, orpiment As2S3, and arsenic pentasulphide As2S5. Realgar occurs native in orange prisms of specific gravity 3·5; it is prepared artificially by fusing together arsenic and sulphur, but the resulting products vary somewhat in composition; it is readily fusible and sublimes unchanged, and burns on heating in a current of oxygen, forming arsenic trioxide and sulphur dioxide.

Orpiment (auri pigmentum) occurs native in pale yellow rhombic prisms, and can be obtained in the amorphous form by passing a current of sulphuretted hydrogen gas through a solution of arsenious oxide or an arsenite, previously acidified with dilute hydrochloric acid. It melts easily and volatilizes. It burns on heating in air, and is soluble in solutions of alkaline hydroxides and carbonates, forming thioarsenites, As2S3+4KHO=K2HAsO3+K2HAsS3+H2O. On acidifying the solution so obtained with hydrochloric acid, the whole of the arsenic is reprecipitated as trisulphide, K2HAsO3+K2HAsS3 + 4HCl=4KCl+3H2O + As2S3. Arsenic pentasulphide, As2S5, can be prepared by fusing the trisulphide with the requisite amount of sulphur; it is a yellow easily-fusible solid, which in absence of air can be sublimed unchanged; it is soluble in solutions of the caustic alkalis, forming thioarsenates, which can also be obtained by the action of alkali polysulphides on orpiment. The thioarsenites and thioarsenates of the alkali metals are easily soluble in water, and are readily decomposed by the action of mineral acids. Arsenic compounds containing selenium and sulphur are known, such as arsenic seleno-sulphide, AsSeS2, and arsenic thio-selenide, AsSSe2. Arsenic phosphide, AsP, results when phosphine is passed into arsenic trichloride, being precipitated as a red-brown powder.

Many organic arsenic compounds are known, analogous to those of nitrogen and phosphorus, but apparently the primary and secondary arsines, AsH2·CH3 and AsH(CH3)2, do not exist, although the corresponding chlorine derivatives, AsCl2·CH3, methyl arsine chloride, and AsCl(CH3)2, dimethyl arsine chloride, are known. The tertiary arsines, such as As(CH3)3, trimethyl arsine, and the quaternary arsonium iodides and hydroxides, (CH3)4AsI and (CH3)4As·OH, tetramethyl arsonium iodide and hydroxide, have been obtained. The arsines and arsine chlorides are liquids of overpowering smell, and in some cases exert an extremely irritating action on the mucous membrane. They do not possess basic properties; the halogen in the chlorine compounds is readily replaced by oxygen, and the oxides produced behave like basic oxides. The chlorides AsCl2·CH3 and AsCl(CH3)2 as well as As(CH3)3 are capable of combining with two atoms of chlorine, the arsenic atom apparently changing from the tri- to the penta-valent condition, and the corresponding oxygen compounds can also be oxidized to compounds containing one oxygen atom or two hydroxyl groups more, forming acids or oxides. The compounds of the type AsX5, e.g. AsCl4·CH3, AsCl3(CH3)2, on heating break down, with separation of methyl chloride and formation of compounds of the type AsX3; the breaking down taking place more readily the fewer the number of methyl groups in the compound. The dimethyl arsine (or cacodyl) compounds have been most studied. On distillation of equal parts of dry potassium acetate and arsenious oxide, a colourless liquid of unbearable smell passes over, which is spontaneously inflammable and excessively poisonous. It is sometimes called Cadet’s fuming liquid, and its composition was determined by R. Bunsen, who gave it the name cacodyl oxide (κακώδης, stinking); its formation may be shown thus:

As4O6 + 8CH3CO2K=2[(CH3)2As]2O + 4K2CO3 + 4CO2.

The liquid is spontaneously inflammable owing to the presence of free cacodyl, As2(CH3)4, which is also obtained by heating the oxide with zinc clippings in an atmosphere of carbon dioxide; it is a liquid of overpowering odour, and boils at 170°C. Cacodyl oxide boils at 150° C., and on exposure to air takes up oxygen and water and passes over into the crystalline cacodylic acid, thus:

[(CH3)2As]2O + H2O + O2=2(CH3)2As·O·OH.

Pharmacology.—Of arsenic and its compounds, arsenious acid (dose 1/601/15 gr.) and its preparation liquor arsenicalis, Fowler’s solution (dose 2–8 m), are in very common use. The iodide of arsenic (dose 1/201/5 gr.) is one of the ingredients of Donovan’s solution (see Mercury); and iron arsenate (dose 1/161/4 gr. in a pill), a mixture of ferrous and ferric arsenates with some iron oxide, is of great use in certain cases. Sodium arsenate (1/401/10 gr.) is somewhat less commonly prescribed, though all the compounds of this metal have great value in experienced hands.

Externally, arsenious acid is a powerful caustic when applied to raw surfaces, though it has no action on the unbroken skin. Internally, unless the dose be extremely small, all preparations are severe gastro-intestinal irritants. This effect is the same however the drug be administered, as, even after subcutaneous injection, the arsenic is excreted into the stomach after absorption, and thus sets up gastritis in its passage through the mucous membrane. In minute doses it is a gastric stimulant, promoting the flow of gastric juice. It is quickly absorbed into the blood, where its presence can be demonstrated especially in the white blood corpuscles. In certain forms of anaemia it increases the number of the red corpuscles and also their haemoglobin content. None of these known effects of arsenic is sufficient to account for the profound change that a course of the drug will often produce in the condition of a patient. It has some power of affecting the general metabolism, but no wholly satisfactory explanation is forthcoming. According to Binz and Schultz its power is due to the fact that it is an oxygen-carrier, arsenious acid withdrawing oxygen from the protoplasm to form arsenic acid, which subsequently yields up its oxygen again. It is thus vaguely called an alterative, since the patient recovers under its use. It is eliminated chiefly by the urine, and to a less extent by the alimentary canal, sweat, saliva, bile, milk, tears, hair, &c., but it is also stored up in the body mainly in the liver and kidneys.

Therapeutics.—Externally arsenious acid has been much used by quack doctors to destroy morbid growths, &c., a paste or solution being applied, strong enough to kill the mass of tissue and make it slough out quickly. But many accidents have resulted from the arsenic being absorbed, and the patient thereby poisoned. Internally it is useful in certain forms of dyspepsia, but as some patients are quite unable to tolerate the drug, it must always be administered in very small doses at first, the quantity being slowly increased as tolerance is shown. Children as a rule bear it better than adults. It should never be given on an empty stomach, but always after a full meal. Certain cases of anaemia which do not yield to iron are often much improved by arsenic, though in other apparently similar ones it appears to be valueless. It is the routine treatment for pernicious anaemia and Hodgkin’s disease, though here again the drug may be of no avail. For the neuralgia and anaemia following malaria, for rheumatoid arthritis, for chorea and also asthma and hay fever, it is constantly prescribed with excellent results. Certain skin diseases, as psoriasis, pemphigus and occasionally chronic eczema, are much benefited by its use, though occasionally a too prolonged course will produce the very lesion for which under other circumstances it is a cure. A recent method of using the drug is in the form of sodium cacodylate by subcutaneous injection, and this preparation is said to be free from the cumulative effects sometimes arising after the prolonged use of the other forms. Other organic derivatives employed are sodium metharsenite and sodium anilarsenate or atoxyl; hypodermic injections of the latter have been used in the treatment of sleeping sickness. Occasionally, as among the Styrians, individuals acquire the habit of arsenic-eating, which is said to increase their weight, strength and appetite, and clears their complexion. The probable explanation is that an antitoxin is developed within them.

Toxicology and Forensic Medicine.—The commonest source of arsenical poisoning is the arsenious acid or white arsenic, which in one form is white and opaque, like flour, for which it has been mistaken with fatal results. Also, as it has little taste and no colour it is easily mixed with food for homicidal purposes. When combined with potash or soda it is used to saturate flypapers, and strong solutions can be obtained by soaking these in water; this fact has also been used with criminal intent. Copper arsenite (or Scheele’s green) used to be much employed as a pigment for wall-papers and fabrics, and toxic effects have resulted from their use. Metallic arsenic is probably not poisonous, but as it usually becomes oxidized in the alimentary canal, the usual symptoms of arsenical poisoning follow its use.

In acute poisoning the interval between the reception of the poison and the onset of symptoms ranges from ten minutes, or even less, if a strong solution be taken on an empty stomach, to