Page:EB1911 - Volume 02.djvu/862

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
HISTORY]
ASTRONOMY
 815

but the imaginative side of knowledge had also potent representatives Lalande. during the latter half of the 18th century. In France, especially, the versatile activity of J. J. Lalande popularized the acquisitions of astronomy, and enforced its demands; and he had a German counterpart in J. E. Bode.

Between the time of Aristarchus and the opposition of Mars in 1672, no serious attempt was made to solve the problem of the sun’s distance. In that year, however, Jean Richer at Cayenne and G. D. Cassini at Paris made combined observations of the planet, which yielded Distance of the sun.a parallax for the sun of 9·5″, corresponding to a mean radius for the terrestrial orbit of 87,000,000 m. This result, though widely inaccurate, came much nearer to the truth than any previously obtained; and it instructively illustrated the feasibility of concerted astronomical operations at distant parts of the earth. The way was thus prepared for availing to the full of the opportunities for a celestial survey offered by the transits of Venus in 1761 and 1769. They had been signalized by E. Halley in 1716; they were later insisted upon by Lalande; an enthusiasm for co-operation was evoked, and the globe, from Siberia to Otaheite, was studded with observing parties. The outcome, nevertheless, disappointed expectation. The instants of contact between the limbs of the sun and planet defied precise determination. Optical complications fatally impeded sharpness of vision, and the phenomena took place in a debateable borderland of uncertainty. J. F. Encke, it is true, derived from them in 1822–1824 what seemed an authentic parallax of 8·57″, implying a distance of 95,370,000 m.; but the confidence it inspired was finally overthrown in 1854 by P. A. Hansen’s announcement of its incompatibility with lunar theory. An appeal then lay to the 19th century pair of transits in 1874 and 1882; but no peremptory decision ensued; observations were marred by the same optical evils as before. Their upshot, however, had lost its essential importance; for a fresh series of investigations based on a variety of principles had already been started. Leverrier, in 1858, calculated a value of 8·95″ for the solar parallax (equivalent to a distance of 91,000,000 m.) from the “parallactic inequality” of the moon; Professor Newcomb, using other forms of the gravitational method, derived in 1895 a parallax of 8·76″. Again, since the constant of aberration defines the ratio between the velocity of light and the earth’s orbital speed, the span of the terrestrial circuit, in other words, the distance of the sun, is immediately deducible from known values of the first two quantities. The rate of light-transmission was accordingly made the subject of an elaborate set of experiments by Professor Newcomb in 1880–1882; and the result, taken in connexion with the aberration-constant as determined at Pulkowa, yielded a solar parallax of 8·79″, or a distance (in round numbers) of 93,000,000 m. But the direct or geometrical mode of attack has still the preference over any of the indirect plans. Sir David Gill derived a highly satisfactory value of 8·78″ for the long-sought constant from the opposition of Mars in 1877, and from combined heliometer observations at five observatories in 1888–1889 of the minor planets Iris, Victoria and Sappho, the apparently definitive value of 8·80″ (equivalent distance, 92,874,000 m.). But an unlooked-for fresh opportunity was afforded by the discovery in 1898 of the singularly circumstanced minor planet Eros, which occasionally approaches the earth more nearly than any other heavenly body except the moon. The opposition of November 1900, though only moderately favourable, could not be neglected; an international photographic campaign was organized at Paris with the aid of 58 observatories; and the voluminous collected data imply, so far as they have been discussed, a parallax for the sun a little greater than 8·8″. (See also Parallax.)

The first specimen of a reflecting telescope was constructed by Isaac Newton in 1668. It was of what is still called “Newtonian” design, and had a speculum 2 in. in diameter. Through the skill of John Hadley (1682–1743) and James Short of Edinburgh (1710–1768) Reflecting telescopes.

William Herschel.
the instrument unfolded, in the ensuing century, some of its capabilities, which the labours of William Herschel enormously enhanced. Between 1774 and 1789 he built scores of specula of continually augmented size, up to a diameter of 4 ft., the optical excellence of which approved itself by a crowd of discoveries. Uranus (q.v.) was recognized by its disk on the 13th of March 1781; two of its satellites, Oberon and Titania, disclosed themselves on the 11th of January 1787; while with the giant 48-in. mirror, used on the “front-view” plan, Mimas and Enceladus, the innermost Saturnian moons, were brought to view on the 28th of August and the 17th of September 1789. These were incidental trophies; Herschel’s main object was the exploration of the sidereal heavens. The task, though novel and formidable, was executed with almost incredible success. Charles Messier (1730–1817) had catalogued in 1781 103 nebulae; Herschel discovered 2500, laid down the lines of their classification, divined the laws of their distribution, and assigned their place in a scheme of development. The proof supplied by him in 1802 that coupled stars mutually circulate threw open a boundless field of research; and he originated experimental inquiries into the construction of the heavens by systematically collecting and sifting stellar statistics. He, moreover, definitively established, in 1783, the fact and general direction of the sun’s movement in Sir John Herschel.space, and thus introduced an element of order into the maze of stellar proper motions. Sir John Herschel continued in the northern, and extended to the southern hemisphere, his father’s work. The third earl of Rosse mounted, at Parsonstown in 1845, a speculum 6 ft. in diameter, which afforded the first indications of the spiral structure shown in recent photographs to be the most prevalent characteristic of nebulae. Down to near the close of the 19th century, Lord Rosse.both the use and the improvement of reflectors were left mainly in British hands; but the gift of the “Crossley” instrument in 1895, to the Lick observatory, and its splendid subsequent performances in nebular photography, brought similar tools of research into extensive use among American astronomers; and they are now, for many of the various purposes of astrophysics, strongly preferred to refractors.

Acquaintance with the asteroidal family began as the 19th century opened. On the 1st of January 1801 Giuseppe Piazzi (1746–1826) discovered Ceres, at Palermo, while engaged in collecting materials for his star-catalogues. A prolonged succession of similar events Giuseppe Piazzi.

Max Wolf.
followed. But in the mode of detecting these swarming bodies, a typical change was made on the 22nd of December 1891, when Dr Max Wolf of Heidelberg photographically captured No. 323. Repetitions of the feat are now counted by the score.

Practical astronomy was only secondarily concerned with the addition of Neptune, on the 23rd of September 1846, to the company of known planets; but William Lassell’s discovery of its satellite, on the 10th of October following, was a consequence of the perfect figure and high Lassell.

Bond. ; Hall.

Barnard. ; Perrine.
polish of his 2-ft. speculum. With the same instrument, he further detected, on the 19th of September 1848, Hyperion, the seventh of Saturn’s attendants, and, on the 24th of October 1851, Ariel and Umbriel, the interior moons of Uranus. Simultaneously with Lassell, on the opposite shore of the Atlantic, W. C. Bond identified Hyperion; and he perceived, on the 15th of November 1850, Saturn’s dusky ring, independently observed, a fortnight later, by W. R. Dawes, at Wateringbury in Kent. With the Washington 26-in. refractor, on the 11th of August 1877, Professor Asaph Hall descried the moons of Mars, Deimos and Phobos; and a minute light-speck, noticed by Professor E. E. Barnard in the close neighbourhood of Jupiter on the 9th of September 1892, proved representative of a small inner satellite, invisible with less perfect and powerful instruments than the Lick 36-in. achromatic. The Jovian system has been reinforced by three remote and extremely faint members, two photographed by Professor C. D. Perrine with the Crossley reflector in 1904–1905, and the third at Greenwich in