Page:EB1911 - Volume 03.djvu/294

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
BALLISTICS
277

After a certain discount for friction and the recoil of the gun, the net work realized by the powder-gas as the shot advances AM is represented by the area ACPM, and this is equated to the kinetic energy e of the shot, in foot-tons,

(1) 

in which the factor 4(k2/d2)tan2δ represents the fraction due to the rotation of the shot, of diameter d and axial radius of gyration k, and δ represents the angle of the rifling; this factor may be ignored in the subsequent calculations as small, less than 1%.

The mean effective pressure (M.E.P.) in tons per sq. in. is represented in fig. 3 by the height AH, such that the rectangle AHKB is equal to the area APDB; and the M.E.P. multiplied by 1/4πd2, the cross-section of the bore in square inches, gives in tons the mean effective thrust of the powder on the base of the shot and multiplied again by l, the length in inches of the travel AB of the shot up the bore, gives the work realized in inch-tons; which work is thus equal to the M.E.P. multiplied by 1/4πd2l=B−C, the volume in cubic inches of the rifled part AB of the bore, the difference between B the total volume of the bore and C the volume of the powder-chamber.

Equating the muzzle-energy and the work in foot-tons

(2) 
(3) 

Working this out for the 6-in., gun of the range table, taking L=216 in., we find B−C=6100 cub. in., and the M.E.P. is about 6·4 tons per sq. in.

But the maximum pressure may exceed the mean in the ratio of 2 or 3 to 1, as shown in fig. 4, representing graphically the result of Sir Andrew Noble’s experiments with a 6-in, gun, capable of being lengthened to 100 calibres or 50 ft. (Proc. R.S., June 1894).

On the assumption of uniform pressure up the bore, practically realizable in a Zalinski pneumatic dynamite gun, the pressure-curve would be the straight line HK of fig. 3 parallel to AM; the energy-curve AQE would be another straight line through A; the velocity-curve AvV, of which the ordinate v is as the square root of the energy, would be a parabola; and the acceleration of the shot being constant, the time-curve AtT will also be a similar parabola.

If the pressure falls off uniformly, so that the pressure-curve is a straight line PDF sloping downwards and cutting AM in F, then the energy-curve will be a parabola curving downwards, and the velocity-curve can be represented by an ellipse, or circle with centre F and radius FA; while the time-curve will be a sinusoid.


Fig. 5.


But if the pressure-curve is a straight line F′CP sloping upwards, cutting AM behind A in F', the energy-curve will be a parabola curving upwards, and the velocity-curve a hyperbola with center at F′.

These theorems may prove useful in preliminary calculations where the pressure-curve is nearly straight; but, in the absence of any observable law, the area of the pressure-curve must be read off by a planimeter, or calculated by Simpson’s rule, as an indicator diagram.

To measure the pressure experimentally in the bore of a gun, the crusher-gauge is used as shown in fig. 6, nearly full size; it records the maximum pressure by the compression of a copper cylinder in its interior; it may be placed in the powder-chamber, or fastened in the base of the shot.

In Sir Andrew Noble’s researches a number of plugs were inserted in the side of the experimental gun, reaching to the bore and carrying crusher-gauges, and also chronographic appliances which registered the passage of the shot in the same manner as the electric screens in Bashforth’s experiments; thence the velocity and energy of the shot was inferred, to serve as an independent control of the crusher-gauge records (figs. 4 and 5).

As a preliminary step to the determination of the pressure in the bore of a gun, it is desirable to measure the pressure obtained by exploding a charge of powder in a closed vessel, varying the weight of the charge and thereby the density of the powder-gas.

The earliest experiments of this nature are due to Benjamin Robins in 1743 and Count Rumford in 1792; and their method has been revived by Dr Kellner, War Department chemist, who employed the steel spheres of bicycle ball-bearings as safety-valves, loaded to register the pressure at which the powder-gas will blow off, and thereby check the indications of the crusher-gauge (Proc. R.S., March 1895).

Fig. 6.

Chevalier d’Arcy, 1760, also experimented on the pressure of powder and the velocity of the bullet in a musket barrel; this he accomplished by shortening the barrel successively, and measuring the velocity obtained by the ballistic pendulum; thus reversing Noble’s procedure of gradually lengthening the gun.

But the most modern results employed with gunpowder are based on the experiments of Noble and Abel (Phil. Trans., 1875–1880–1892–1894 and following years).

A charge of powder, or other explosive, of varying weight P lb, is fired in an explosion-chamber (fig. 7, scale about 1/5) of which the volume C, cub. in., is known accurately, and the pressure p, tons per sq. in., was recorded by a crusher-gauge (fig. 6).