Page:EB1911 - Volume 04.djvu/1016

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
CALENDAR
989


Ides, counting inclusively. From these three terms the days received their denomination in the following manner:—Those which were comprised between the Calends and the Nones were called the days before the Nones; those between the Nones and the Ides were called the days before the Ides; and, lastly, all the days after the Ides to the end of the month were called the days before the Calends of the succeeding month. In the months of March, May, July and October, the Ides fell on the 15th day, and the Nones consequently on the 7th; so that each of these months had six days named from the Nones. In all the other months the Ides were on the 13th and the Nones on the 5th; consequently there were only four days named from the Nones. Every month had eight days named from the Ides. The number of days receiving their denomination from the Calends depended on the number of days in the month and the day on which the Ides fell. For example, if the month contained 31 days and the Ides fell on the 13th, as was the case in January, August and December, there would remain 18 days after the Ides, which, added to the first of the following month, made 19 days of Calends. In January, therefore, the 14th day of the month was called the nineteenth before the Calends of February (counting inclusively), the 15th was the 18th before the Calends and so on to the 30th, which was called the third before the Calend (tertio Calendas), the last being the second of the Calends, or the day before the Calends (pridie Calendas).

Days of 
the
Month.
March.
May.
July.
October.
January.
August.
December.
April.
June.
September.
November.
February.
 1 Calendae. Calendae. Calendae. Calendae.
 2  6  4  4  4
 3  5  3  3  3
 4  4 Prid. Nonas. Prid. Nonas. Prid. Nonas.
 5  3 Nonae. Nonae. Nonae.
 6 Prid. Nonas.  8  8  8
 7 Nonae.  7  7  7
 8  8  6  6  6
 9  7  5  5  5
10  6  4  4  4
11  5  3  3  3
12  4 Prid. Idus. Prid. Idus. Prid. Idus.
13  3 Idus. Idus. Idus.
14 Prid. Idus. 19 18 16
15 Idus. 18 17 15
16 17 17 16 14
17 16 16 15 13
18 15 15 14 12
19 14 14 13 11
20 13 13 12 10
21 12 12 11  9
22 11 11 10  8
23 10 10  9  7
24  9  9  8  6
25  8  8  7  5
26  7  7  6  4
27  6  6  5  3
28  5  5  4 Prid. Calen.
Mart.
29  4  4  3
30  3  3 Prid. Calen.
31 Prid. Calen. Prid. Calen.

Year.—The year is either astronomical or civil. The solar astronomical year is the period of time in which the earth performs a revolution in its orbit about the sun, or passes from any point of the ecliptic to the same point again; and consists of 365 days 5 hours 48 min. and 46 sec. of mean solar time. The civil year is that which is employed in chronology, and varies among different nations, both in respect of the season at which it commences and of its subdivisions. When regard is had to the sun’s motion alone, the regulation of the year, and the distribution of the days into months, may be effected without much trouble; but the difficulty is greatly increased when it is sought to reconcile solar and lunar periods, or to make the subdivisions of the year depend on the moon, and at the same time to preserve the correspondence between the whole year and the seasons.

Of the Solar Year.—In the arrangement of the civil year, two objects are sought to be accomplished,—first, the equable distribution of the days among twelve months; and secondly, the preservation of the beginning of the year at the same distance from the solstices or equinoxes. Now, as the year consists of 365 days and a fraction, and 365 is a number not divisible by 12, it is impossible that the months can all be of the same length and at the same time include all the days of the year. By reason also of the fractional excess of the length of the year above 365 days, it likewise happens that the years cannot all contain the same number of days if the epoch of their commencement remains fixed; for the day and the civil year must necessarily be considered as beginning at the same instant; and therefore the extra hours cannot be included in the year till they have accumulated to a whole day. As soon as this has taken place, an additional day must be given to the year.

The civil calendar of all European countries has been borrowed from that of the Romans. Romulus is said to have divided the year into ten months only, including in all 304 days, and it is not very well known how the remaining days were disposed of. The ancient Roman year commenced with March, as is indicated by the names September, October, November, December, which the last four months still retain. July and August, likewise, were anciently denominated Quintilis and Sextilis, their present appellations having been bestowed in compliment to Julius Caesar and Augustus. In the reign of Numa two months were added to the year, January at the beginning and February at the end; and this arrangement continued till the year 452 B.C., when the Decemvirs changed the order of the months, and placed February after January. The months now consisted of twenty-nine and thirty days alternately, to correspond with the synodic revolution of the moon, so that the year contained 354 days; but a day was added to make the number odd, which was considered more fortunate, and the year therefore consisted of 355 days. This differed from the solar year by ten whole days and a fraction; but, to restore the coincidence, Numa ordered an additional or intercalary month to be inserted every second year between the 23rd and 24th of February, consisting of twenty-two and twenty-three days alternately, so that four years contained 1465 days, and the mean length of the year was consequently 3661/4 days. The additional month was called Mercedinus or Mercedonius, from merces, wages, probably because the wages of workmen and domestics were usually paid at this season of the year. According to the above arrangement, the year was too long by one day, which rendered another correction necessary. As the error amounted to twenty-four days in as many years, it was ordered that every third period of eight years, instead of containing four intercalary months, amounting in all to ninety days, should contain only three of those months, consisting of twenty-two days each. The mean length of the year was thus reduced to 3651/4 days; but it is not certain at what time the octennial periods, borrowed from the Greeks, were introduced into the Roman calendar, or whether they were at any time strictly followed. It does not even appear that the length of the intercalary month was regulated by any certain principle, for a discretionary power was left with the pontiffs, to whom the care of the calendar was committed, to intercalate more or fewer days according as the year was found to differ more or less from the celestial motions. This power was quickly abused to serve political objects, and the calendar consequently thrown into confusion. By giving a greater or less number of days to the intercalary month, the pontiffs were enabled to prolong the term of a magistracy or hasten the annual elections; and so little care had been taken to regulate the year, that, at the time of Julius Caesar, the civil equinox differed from the astronomical by three months, so that the winter months were carried back into autumn and the autumnal into summer.

In order to put an end to the disorders arising from the negligence or ignorance of the pontiffs, Caesar abolished the use of the lunar year and the intercalary month, and regulated the civil year entirely by the sun. With the advice and assistance of Sosigenes, he fixed the mean length of the year at 3651/4 days, and decreed that every fourth year should have 366 days, the