Page:EB1911 - Volume 04.djvu/316

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
BOTANY
301

modified form of which was elaborated by Dr Adolf Engler of Berlin, the principal editor of Die natrürliche Pflanzenfamilien.

The study of the anatomy and physiology of plants did not keep pace with the advance in classification. Nehemiah Grew and his contemporary Marcello Malpighi were the earliest discoverers in the department of plant anatomy. Both authors laid an account of the results of their study of plant structure before the Royal Society of London almost at the same time in 1671. Malpighi’s complete work, Anatome Plantarum, appeared in 1675 and Grew’s Anatomy of Plants in 1682. For more than a hundred years the study of internal structure was neglected. In 1802 appeared the Traité d’anatomie et de physiologie végétale of C. F. B. de Mirbel (1776–1854), which was quickly followed by other publications by Kurt Sprengel, L. C. Treviranus (1779–1864), and others. In 1812 J. J. P. Moldenhawer isolated cells by maceration of tissues in water. The work of F. J. F. Meyen and H. von Mohl in the middle of the 19th century placed the study of plant anatomy on a more scientific basis. Reference must also be made to M. J. Schleiden (1804–1881) and F. Unger (1800–1870), while in K. W. von Nägeli’s investigations on molecular structure and the growth of the cell membrane we recognize the origin of modern methods of the study of cell-structure included under cytology (q.v.). The work of Karl Sanio and Th. Hartig advanced knowledge on the structure and development of tissues, while A. de Bary’s Comparative Anatomy of the Phanerogams and Ferns (1877) supplied an admirable presentation of the facts so far known. Since then the work has been carried on by Ph. van Tieghem and his pupils, and others, who have sought to correlate the large mass of facts and to find some general underlying principles (see Plants: Anatomy of ).

The subject of fertilization was one which early excited attention. The idea of the existence of separate sexes in plants was entertained in early times, long before separate male and female organs had been demonstrated. The production of dates in Egypt, by bringing two kinds of flowers into contact, proves that in very remote periods some notions were entertained on the subject. Female date-palms only were cultivated, and wild ones were brought from the desert in order to fertilize them. Herodotus informs us that the Babylonians knew of old that there were male and female date-trees, and that the female required the concurrence of the male to become fertile. This fact was also known to the Egyptians, the Phoenicians and other nations of Asia and Africa. The Babylonians suspended male clusters from wild dates over the females; but they seem to have supposed that the fertility thus produced depended on the presence of small flies among the wild flowers, which, by entering the female flowers, caused them to set and ripen. The process was called palmification. Theophrastus, who succeeded Aristotle in his school in the 114th Olympiad, frequently mentions the sexes of plants, but he does not appear to have determined the organs of reproduction. Pliny, who flourished under Vespasian, speaks particularly of a male and female palm, but his statements were not founded on any real knowledge of the organs. From Theophrastus down to Caesalpinus, who died at Rome in 1603, there does not appear to have been any attention paid to the reproductive organs of plants. Caesalpinus had his attention directed to the subject, and he speaks of a halitus or emanation from the male plants causing fertility in the female.

Nehemiah Grew seems to have been the first to describe, in a paper on the Anatomy of Plants, read before the Royal Society in November 1676, the functions of the stamens and pistils. Up to this period all was vague conjecture. Grew speaks of the attire, or the stamens, as being the male parts, and refers to conversations with Sir Thomas Millington, Sedleian professor at Oxford, to whom the credit of the sexual theory seems really to belong. Grew says that “when the attire or apices break or open, the globules or dust falls down on the seedcase or uterus, and touches it with a prolific virtue.” Ray adopted Grew’s views, and states various arguments to prove their correctness in the preface to his work on European plants, published in 1694. In 1694 R. J. Camerarius, professor of botany and medicine at Tübingen, published a letter on the sexes of plants, in which he refers to the stamens and pistils as the organs of reproduction, and states the difficulties he had encountered in determining the organs of Cryptogamic plants. In 1703 Samuel Morland, in a paper read before the Royal Society, stated that the farina (pollen) is a congeries of seminal plants, one of which must be conveyed into every ovum or seed before it can become prolific. In this remarkable statement he seems to anticipate in part the discoveries afterwards made as to pollen tubes, and more particularly the peculiar views promulgated by Schleiden. In 1711 E. F. Geoffrey, in a memoir presented to the Royal Academy at Paris, supported the views of Grew and others as to the sexes of plants. He states that the germ is never to be seen in the seed till the apices (anthers) shed their dust; and that if the stamina be cut out before the apices open, the seed will either not ripen, or be barren if it ripens. He mentions two experiments made by him to prove this—one by cutting off the staminal flowers in Maize, and the other by rearing the female plant of Mercurialis apart from the male. In these instances most of the flowers were abortive, but a few were fertile, which he attributes to the dust of the apices having been wafted by the wind from other plants.

Linnaeus took up the subject in the inauguration of his sexual system. He first published his views in 1736, and he thus writes—“Antheras et stigmata constituere sexum plantarum, a palmicolis, Millingtono, Grewio, Rayo, Camerario, Godofredo, Morlando, Vaillantio, Blairio, Jussievio, Bradleyo, Royeno, Logano, &c., detectum, descriptum, et pro infallibili assumptum; nec ullum, apertis oculis considerantem cujuscunque plantae flores, latere potest.” He divided plants into sexual and asexual, the former being Phanerogamous or flowering, and the latter Cryptogamous or flowerless. In the latter division of plants he could not detect stamens and pistils, and he did not investigate the mode in which their germs were produced. He was no physiologist, and did not promulgate any views as to the embryogenic process. His followers were chiefly engaged in the arrangement and classification of plants, and while descriptive botany made great advances the physiological department of the science was neglected. His views were not, however, adopted at once by all, for we find Charles Alston stating arguments against them in his Dissertation on the Sexes of Plants. Alston’s observations were founded on what occurred in certain unisexual plants, such as Mercurialis, Spinach, Hemp, Hop and Bryony. The conclusion at which he arrives is that the pollen is not in all flowering plants necessary for impregnation, for fertile seeds can be produced without its influence. He supports parthenogenesis in some plants. Soon after the promulgation of Linnaeus’s method of classification, the attention of botanists was directed to the study of Cryptogamic plants, and the valuable work of Johann Hedwig (1730–1799) on the reproductive organs of mosses made its appearance in 1782. He was one of the first to point out the existence of certain cellular bodies in these plants which appeared to perform the functions of reproductive organs, and to them the names of antheridia and pistillidia were given. This opened up a new field of research, and led the way in the study of Cryptogamic reproduction, which has since been much advanced by the labours of numerous botanical inquiries. The interesting observations of Morland, already quoted, seem to have been neglected, and no one attempted to follow in the path which he had pointed out. Botanists were for a long time content to know that the scattering of the pollen from the anther, and its application to the stigma, were necessary for the production of perfect seed, but the stages of the process of fertilization remained unexplored. The matter seemed involved in mystery, and no one attempted to raise the veil which hung over the subject of embryogeny. The general view was, that the embryo originated in the ovule, which was in some obscure manner fertilized by the pollen.

In 1815 L. C. Treviranus, professor of botany in Bonn, roused the attention of botanists to the development of the embryo, but although he made valuable researches, he did not add much in the way of new information. In 1823 G. B. Amici discovered the