serious as the dead weight of the structure becomes large in proportion to the live or temporary load. It is, therefore, a type specially suited for great spans. Some suspension bridges have broken down in consequence of the oscillations produced by bodies of men marching in step. In 1850 a suspension bridge at Angers gave way when 487 soldiers were marching over it, and 226 were killed.
To obtain greater stiffness various plans have been adopted. In the Ordish system a certain number of intermediate points in the span are supported by oblique chains, on which girders rest. The Ordish bridge built at Prague in 1868 had oblique chains supporting the stiffening girders at intermediate points of the span. A curved chain supported the oblique chains and kept them straight. In 1860 a bridge was erected over the Danube canal at Vienna, of 264 ft. span which had two parallel chains one above the other and 4 ft. apart on each side of the bridge. The chains of each pair were connected by bracing so that they formed a stiff inverted arch resisting deformation under unequal loading. The bridge carried a railway, but it proved weak owing to errors of calculation, and it was taken down in 1884. The principle was sound and has been proposed at various times. About 1850 it was perceived that a bridge stiff enough to carry railway trains could be constructed by combining supporting chains with stiffening girders suspended from them. W. J. M. Rankine proved (Applied Mechanics, p. 370) that the necessary strength of a stiffening girder would be only one-seventh part of that of an independent girder of the same span as the bridge, suited to carry the same moving load (not including the dead weight of the girder which is supported by the chain). (See “Suspension Bridge with Stiffened Roadway,” by Sir G. Airy, and the discussion, Proc. Inst. C.E., 1867, xxvi. p. 258; also “Suspension Bridges with Stiffening Girders,” by Max am Ende, Proc. Inst. C.E. cxxxvii. p. 306.)
Fig. 11.—Niagara Suspension Bridge.
The most remarkable bridge constructed on this system was the Niagara bridge built by J. A. Roebling in 1852–1855 (fig. 11). The span was 821 ft., much the largest of any railway bridge at that time, and the height above the river 245 ft. There were four suspension cables, each 10 in. in diameter; each was composed of seven strands, containing 520 parallel wires, or 3640 wires in each cable. Each cable was carried on a separate saddle on rollers on each pier. The stiffening girder, constructed chiefly of timber, was a box-shaped braced girder 18 ft. deep and 25 ft. wide, carrying the railway on top and a roadway within. After various repairs and strengthenings, including the replacement of the timber girder by an iron one in 1880, this bridge in 1896–1897 was taken down and a steel arch built in its place. It was not strong enough to deal with the increasing weight of railway traffic. In 1836 I. K. Brunei constructed the towers and abutments for a suspension bridge of 702 ft. span at Clifton over the Avon, but the project was not then carried further; in 1860, however, the link chains of the Hungerford suspension bridge which was being taken down were available at small cost, and these were used to complete the bridge. There are three chains on each side, of one and two links alternately, and these support wrought iron stiffening girders. There are wrought iron saddles and steel rollers on the piers. At 196 ft. on either side from the towers the chains are carried over similar saddles without rollers, and thence at 45° with the horizontal down to the anchorages. Each chain has an anchor plate 5 ft. by 6 ft. The links are 24 ft. long at the centre of the bridge, and longer as they are more inclined, so that their horizontal projection is 24 ft. The chains are so arranged that there is a suspending rod at each 8 ft., attached at the joint of one of the three chains. For erection a suspended platform was constructed on eight wire ropes, on which the chains were laid out and connected. Another wire rope with a travelling carriage took out the links. The sectional area of the chains is 481 sq. in. at the piers and 440 sq. in. at the centre. The two stiffening girders are plate girders 3 ft. deep with flanges of 11 sq. in. area. In addition, the hand railing on each side forms a girder 4 ft. 9 in. deep, with flanges 412 sq. in. area.
Fig. 12.—Williamsburg Suspension Bridge.
Of later bridges of great span, perhaps the bridges over the East river at New York are the most remarkable. The Brooklyn bridge, begun in 1872, has a centre span of 159512 and side spans of 930 ft. The Brooklyn approach being 971 ft., and the New York approach 156212 ft., the total length of the bridge is 5989 ft. There are four cables which carry a promenade, a roadway and an electric railway. The stiffening girders of the main span are 40 ft. deep and 67 ft. apart. The saddles for the chains are 329 ft. above high water. The cables are 1534 in. in diameter. Each cable has 19 strands of 278 parallel steel wires, 7 B.W.G. Each wire is taken separately across the river and its length adjusted. Roebling preferred parallel wires as 10% stronger than twisted wires. Each strand when made up and clamped was lowered to its position. The Williamsburg bridge (fig. 12), begun in 1897 and opened for traffic in 1903, has a span of 1600 ft., a versed sine of 176 ft., and a width of 118 ft. It has two decks, and carries two elevated railway tracks, four electric tramcar lines, two carriageways, two footways and two