propelled electrically from one side to the other. The underside of the stiffening girder is 82 ft. above the river. The car is 55 ft. long by 241/2 ft. wide. The electric motors are under the control of the driver in a cabin on the car. The trolley is an articulated frame 77 ft. long in five sections coupled together with pins. To this are fixed the bearings of the running wheels, fourteen on each side. There are two steel-clad series-wound motors of 36 B.H.P. For a test load of 120 tons the tractive force is 70 ℔ per ton, which is sufficient for acceleration, and maintaining speed against wind pressure. The brakes are magnetic, with auxiliary handbrakes. Electricity is obtained by two gas engines (one spare) each of 75 B.H.P.
On the opening day passengers were taken across at the rate of more than 2000 per hour in addition to a number of vehicles. The time of crossing is 3 or 4 minutes. The total cost of the structure was £133,000.
14. In the United States few railway companies design or build their own bridges. General specifications as to span, loading, &c., are furnished to bridge-building companies, which make the design under the direction of engineers who are experts in this kind of work. The design, with strain sheets and detail drawings, is submitted to the railway engineer with estimates. The result is that American bridges are generally of well-settled types and their members of uniform design, carefully considered with reference to convenient and accurate manufacture. Standard patterns of details are largely adopted, and more system is introduced in the workshop than is possible where the designs are more varied. Riveted plate girders are used up to 50 ft. span, riveted braced girders for spans of 50 ft. to 75 ft., and pin-connected girders for longer spans. Since the erection of the Forth bridge, cantilever bridges have been extensively used, and some remarkable steel arch and suspension bridges have also been constructed. Overhead railways are virtually continuous bridge constructions, and much attention has been given to a study of the special conditions appertaining to that case.
Substructure.
15. The substructure of a bridge comprises the piers, abutments and foundations. These portions usually consist of masonry in some form, including under that general head stone masonry, brickwork and concrete. Occasionally metal work or woodwork is used for intermediate piers.
When girders form the superstructure, the resultant pressure on the piers or abutments is vertical, and the dimensions of these are simply regulated by the sufficiency to bear this vertical load.
When arches form the superstructure, the abutment must be so designed as to transmit the resultant thrust to the foundation in a safe direction, and so distributed that no part may be unduly compressed. The intermediate piers should also have considerable stability, so as to counterbalance the thrust arising when one arch is loaded while the other is free from load.
For suspension bridges the abutment forming the anchorage must be so designed as to be thoroughly stable under the greatest pull which the chains can exert. The piers require to be carried above the platform, and their design must be modified according to the type of suspension bridge adopted. When the resultant pressure is not vertical on the piers these must be constructed to meet the inclined pressure. In any stiffened suspension bridge the action of the pier will be analogous to that of a pier between two arches.
Concrete in a shell is a name which might be applied to all the methods of founding a pier which depend on the very valuable property which strong hydraulic concrete possesses of setting into a solid mass under water. The required space is enclosed by a wooden or iron shell; the soil inside the shell is removed by dredging, or some form of mechanical excavator, until the formation is reached which is to support the pier; the concrete is then shot into the enclosed space from a height of about 10 ft., and rammed down in layers about 1 ft. thick; it soon consolidates into a permanent artificial stone.
Piles are used as foundations in compressible or loose soil. The heads of the piles are sawn off, and a platform of timber or concrete rests on them. Cast iron and concrete reinforced piles are now used. Screw piles are cast iron piles which are screwed into the soil instead of being driven in. At their end is fixed a blade of cast iron from two to eight times the diameter of the shaft of the pile; the pitch of the screw varies from one-half to one-fourth of the external diameter of the blade.
Disk piles have been used in sand. These piles have a flat flange at the bottom, and water is pumped in at the top of the pile, which is weighted to prevent it from rising. Sand is thus blown or pumped from below the piles, which are thus easily lowered in ground which baffles all attempts to drive in piles by blows. In ground which is of the nature of quicksand, piles will often slowly rise to their original position after each blow.
Fig. 35.—Cylinder, Charing |
Wells.—In some soils foundations may be obtained by the device of building a masonry casing like that of a well and excavating the soil inside; the casing gradually sinks and the masonry is continued at the surface. This method is applicable in running sands. The interior of the well is generally filled up with concrete or brick when the required depth has been reached.
Piers and Abutments.—Piers and abutments are of masonry, brickwork, or cast or wrought iron. In the last case they consist of any number of hollow cylindrical pillars, vertical or raking, turned and planed at the ends and united by a projection or socket and by flanges and bolts. The pillars are strengthened against lateral yielding by horizontal and diagonal bracing. In some cases the piers are cast iron cylinders 10 ft. or more in diameter filled with concrete.
Cylinder Foundations.—Formerly when bridge piers had to be placed where a firm bearing stratum could only be reached at a considerable depth, a timber cofferdam was used in which piles were driven down to the firm stratum. On the piles the masonry piers were built. Many bridges so constructed have stood for centuries. A great change of method arose when iron cylinders and in some cases brick cylinders or wells were adopted for foundations. These can be sunk to almost any depth or brought up to any height, and are filled with Portland cement concrete. They are sometimes excavated by grabs. Sometimes they are closed in and kept free of water by compressed air so that excavation work can be carried on inside them (fig. 35). Sometimes in silty river beds they are sunk 100 ft. or more, for