Jump to content

Page:EB1911 - Volume 04.djvu/58

From Wikisource
This page has been proofread, but needs to be validated.
BLASTING
45

displaced or projected, leaving an enveloping mass of more or less ragged fractured rock only partially loosened. Lastly, the diminishing waves produce vibrations which are transmitted to considerable distances. Theoretically, if a charge of explosive be fired in a solid material of perfectly homogeneous texture and at a proper distance from the free surface, a conical mass will be blown out to the full depth of the drill hole, leaving a funnel-shaped cavity. No rock, however, is of uniform mineralogical and physical character, so that in practice there is only a rough approximation to the conical crater, even under the most favourable conditions. Generally, the shape of the mass blasted out is extremely irregular, because of the variable texture of the rock and the presence of cracks, fissures and cleavage planes. The ultimate or resultant useful effect of the explosion of a confined charge is in the direction where the least resistance is presented. In the actual work of rock excavation it is only by trial, or by deductions based on experience, that the behaviour of a given rock can be determined and the quantity of explosive required properly proportioned.

Blasting, as usually carried on, comprises several operations: (1) drilling holes in the rock to be blasted; (2) placing in the hole the charge of explosive, with its fuze; (3) tamping the charge, i.e. compacting it and filling the remainder of the hole with some suitable material for preventing the charge from blowing out without breaking the ground; (4) igniting or detonating the charge; (5) clearing away the broken material. The holes for blasting are made either by hand, with hammer and drill or jumper, or by machine drill, the latter being driven by steam, compressed air, or electricity, or, in rare cases, by hydraulic power. Drill holes ordinarily vary in diameter from 1 to 3 in., and in depth from a few inches up to 15 or 20 ft. or more. The deeper holes are made only in surface excavation of rock, the shallower, to a maximum depth of say 12 ft., being suitable for tunnelling and mining operations.

Fig. 1.

Hand Drilling.—The work is either “single-hand” or “double-hand.” In single-hand drilling, the miner wields the hammer with one hand, and with the other holds the drill or “bit,” rotating it slightly after every blow in order to keep the hole round and prevent the drill from sticking fast; in double-hand work, one man strikes, while the other holds and rotates the drill. For large and deep holes, two hammermen are sometimes employed.

A miner’s drill is a steel bar, occasionally round but generally of octagonal cross-section, one end of which is forged out to a cutting edge (fig. 1). The edge of the drill is made either straight, like that of a chisel, or with a convex curve, the latter shape being best for very hard rock. For hard rock the cutting edge should be rather thicker and blunter, and therefore stronger, than for soft rock. Drills are made of high-grade steel, as they must be tempered accurately and uniformly. The diameter of drill steel for hand work is usually from 3/4 to 1 in., and the length of cutting edge, or gauge, of the drill is always greater than the diameter of the shank, in the proportion of from 7.4 to 4.3. Holes over 10 or 12 in. deep generally require the use of a set of drills of different lengths and depending in number on the depth required. The shortest drill, for starting the hole, has the widest cutting edge, the edges of the others being successively narrower and graduated to follow each other properly, as drill after drill is dulled in deepening the hole. Thus the hole decreases in diameter as it is made deeper. The miner’s hammer (fig. 2) ranges in weight from 31/2 to 41/2 ℔ for single-hand drilling, up to 8 or 10 ℔ for double-hand. If the hole is directed downward, a little water is poured into it at intervals, to keep the cutting edge of the drill cool and make a thin mud of the cuttings. From time to time the hole is cleaned out by the “scraper” or “spoon,” a long slender iron bar, forged in the shape of a hollow semi-cylinder, with one end flattened and turned over at right angles. If the hole is directed steeply upward and the rock is dry, the cuttings will run out continuously during the drilling; otherwise the scraper is necessary, or a small pipe with a plunger like a syringe is used for washing out the cuttings. The “jumper” is a long steel bar, with cutting edges on one or both ends, which is alternately raised and dropped in the hole by one or two men. In rock work the jumper is rarely used except for holes directed steeply downward, though for coal or soft shale or slate it may be employed for drilling holes horizontally or upward. Other tools used in connexion with rock-drilling are the pick and gad.

      
Fig. 2.—Sledge-hammer.    Fig. 3.—Ingersoll-Sergeant Mining Drill.

Holes drilled by hand usually vary in depth from say 18 to 36 in., according to the nature of the rock and purpose of the work, though deeper holes are often made. For soft rock, single-hand drilling is from 20 to 30% cheaper than double-hand, but this difference does not hold good for the harder rocks. For these double-hand drilling is preferable, and may even be essential, to secure a reasonable speed of work.

Machine Drills.—The introduction of machine drills in the latter part of the 19th century exerted an important influence on the work of rock excavation in general, and specially on the art of mining. By their use many great tunnels and other works involving rock excavation under adverse conditions have been rapidly and successfully carried out. Before the invention of machine drills such work progressed slowly and with difficulty. Nearly all machine drills are of the reciprocating or percussive type, in which the drill bit is firmly clamped to the piston rod and delivers a rapid succession of strong blows on the bottom of the hole. The ordinary compressed air drill (which may, for surface work, be operated also by steam) may be taken as an illustration. The piston works in a cylinder, provided with a valve motion somewhat similar to that of a steam-engine, together with an automatic device for producing the necessary rotation of the piston and drill bit. While at work the machine is mounted on a heavy tripod (fig. 3); or, if underground, sometimes on an iron column or bar, firmly wedged in position between the roof and floor, or side walls, of the tunnel or mine working. As the hole is deepened, the entire drill head is gradually fed forward on its support by a screw feed, a succession of longer and longer drill bits being used as required.

Among the numerous types and makes of percussion drill may be named the following:—Adelaide, Climax, Darlington, Dubois-François, Ferroux, Froelich, Hirnant, Ingersoll, Jeffrey, Leyner, McKiernan, Rand, Schram, Sergeant, Sullivan and Wood.


Figs. 4 and 5.—Darlington’s Rock Drill.

One of the simplest of the machine drills is the Darlington (figs. 4 and 5): a is the cylinder; b, piston rod; c, bit; d, d, air inlets, either being used according to the position of the drill while at work; h, piston; j, rifle-bar for rotating piston and bit; k, ratchet attached to j; l, brass nut, screwed into h, and in which j works; f, chuck for holding drill-bit; n, air port communicating between ends of cylinder, front and back of piston; o, exhaust port. This machine has no valve. From its construction, the compressed air (or steam) is always acting on the annular shoulder round the forward end of the piston. The piston is thereby forced back on the