of it is propagated through the air. With respect to the limits of pitch, Savart found that the note might be a fifth above, and more than an octave below, that proper to the jet. According to theory, there would be no well-defined lower limit; on the other side, the external vibration cannot be efficient if it tends to produce divisions whose length is less than the circumference of the jet. This would give for the interval defining the upper limit : 4.508, which is very nearly a fifth. In the case of Plateau’s numbers (: 4.38) the discrepancy is a little greater.
The detached masses into which a jet is resolved do not at once assume and retain a spherical form, but execute a series of vibrations, being alternately compressed and elongated in the direction of the axis of symmetry. When the resolution is effected in a perfectly periodic manner, each drop is in the same phase of its vibration as it passes through a given point of space; and thence arises the remarkable appearance of alternate swellings and contractions described by Savart. The interval from one swelling to the next is the space described by the drop during one complete vibration, and is therefore (as Plateau shows) proportional ceteris paribus to the square root of the head.
The time of vibration is of course itself a function of the nature of the fluid and of the size of the drop. By the method of dimensions alone it may be seen that the time of infinitely small vibrations varies directly as the square root of the mass of the sphere and inversely as the square root of the capillary tension; and it may be proved that its expression is
(5) |
being the volume of the vibrating mass.
In consequence of the rapidity of the motion some optical device is necessary to render apparent the phenomena attending the disintegration of a jet. Magnus employed a rotating mirror, and also a rotating disk from which a fine slit was cut out. The readiest method of obtaining instantaneous illumination is the electric spark, but with this Magnus was not successful. The electric spark had, however, been used successfully for this purpose some years before by H. Buff (Liebigs Ann. lxxviii. 1851), who observed the shadow of the jet on a white screen. Preferable to an opaque screen is a piece of ground glass, which allows the shadow to be examined from the farther side (Lord Rayleigh). Further, the jet may be very well observed directly, if the illumination is properly managed. For this purpose it is necessary to place it between the source of light and the eye. The best effect is obtained when the light of the spark is somewhat diffused by being passed (for example) through a piece of ground glass.
The spark may be obtained from the secondary of an induction coil, whose terminals are in connexion with the coatings of a Leyden jar. By adjustment of the contact breaker the series of sparks may be made to fit more or less perfectly with the formation of the drops. A still greater improvement may be effected by using an electrically maintained fork, which performs the double office of controlling the resolution of the jet and of interrupting the primary current of the induction coil. In this form the experiment is one of remarkable beauty. The jet, illuminated only in one phase of transformation, appears almost perfectly steady, and may be examined at leisure. In one experiment the jet issued horizontally from an orifice of about half a centimetre in diameter, and almost immediately assumed a rippled outline. The gradually increasing amplitude of the disturbance, the formation of the elongated ligament, and the subsequent transformation of the ligament into a spherule, could be examined with ease. In consequence of the transformation being in a more advanced stage at the forward than at the hinder end, the ligament remains for a moment connected with the mass behind, when it has freed itself from the mass in front, and thus the resulting spherule acquires a backwards relative velocity, which of necessity leads to a collision. Under ordinary circumstances the spherule rebounds, and may be thus reflected backwards and forwards several times between the adjacent masses. Magnus showed that the stream of spherules may be diverted into another path by the attraction of a powerfully electrified rod, held a little below the place of resolution.
Very interesting modifications of these phenomena are observed when a jet from an orifice in a thin plate (Tyndall has shown that a pinhole gas burner may also be used with advantage) is directed obliquely upwards. In this case drops which break away with different velocities are carried under the action of gravity into different paths; and thus under ordinary circumstances a jet is apparently resolved into a “sheaf,” or bundle of jets all lying in one vertical plane. Under the action of a vibrator of suitable periodic time the resolution is regularized, and then each drop, breaking away under like conditions, is projected with the same velocity, and therefore follows the same path. The apparent gathering together of the sheaf into a fine and well-defined stream is an effect of singular beauty.
In certain cases where the tremor to which the jet is subjected is compound, the single path is replaced by two, three or even more paths, which the drops follow in a regular cycle. The explanation has been given with remarkable insight by Plateau. If, for example, besides the principal disturbance, which determines the size of the drops, there be another of twice the period, it is clear that the alternate drops break away under different conditions and therefore with different velocities. Complete periodicity is only attained after the passage of a pair of drops; and thus the odd series of drops pursues one path, and the even series another.
Electricity, as has long been known, has an extraordinary influence upon the appearance of a fine jet of water ascending in a nearly perpendicular direction. In its normal state the jet resolves itself into drops, which even before passing the summit, and still more after passing it, are scattered through a considerable width. When a feebly electrified body (such as a stick of sealing-wax gently rubbed upon the coat sleeve) is brought into its neighbourhood, the jet undergoes a remarkable transformation and appears to become coherent; but under more powerful electrical action the scattering becomes even greater than at first. The second effect is readily attributed to the mutual repulsion of the electrified drops, but the action of feeble electricity in producing apparent coherence was long unexplained.
It was shown by W. von Beetz that the coherence is apparent only, and that the place where the jet breaks into drops is not perceptibly shifted by the electricity. By screening the various parts with metallic plates in connexion with earth, Beetz further proved that, contrary to the opinion of earlier observers, the seat of sensitiveness is not at the root of the jet where it leaves the orifice, but at the place of resolution into drops. An easy way of testing this conclusion is to excite the extreme tip of a glass rod, which is then held in succession to the root of the jet, and to the place of resolution. An effect is observed in the latter, and not in the former position.
The normal scattering of a nearly vertical jet is due to the rebound of the drops when they come into collision with one another. Such collisions are inevitable in consequence of the different velocities acquired by the drops under the action of the capillary force, as they break away irregularly from the continuous portion of the jet. Even when the resolution is regularized by the action of external vibrations of suitable frequency, as in the beautiful experiments of Savart and Plateau, the drops must still come into contact before they reach the summit of their parabolic path. In the case of a continuous jet, the equation of continuity shows that as the jet loses velocity in ascending, it must increase in section. When the stream consists of drops following one another in single file, no such increase of section is possible; and then the constancy of the total stream requires a gradual approximation of the drops, which in the case of a nearly vertical direction of motion cannot stop short of actual contact. Regular vibration has, however, the effect of postponing the collisions and consequent scattering of the drops, and in the case of a direction of motion less nearly vertical, may prevent them altogether.
Under moderate electrical influence there is no material