appearance from the original cellulose, and are without influence on its essential characteristics.
Decompositions.—Hydrolysis:—By solution in sulphuric acid followed by dilution and boiling the diluted solution cellulose hydrolyses to fermentable sugars; this reaction is utilized industrially in the manufacture of glucose from rags. Hydrochloric acid produces a friable mass of “hydrocellulose,” probably C12H22O11, insoluble in water, but readily attacked by alkalis, with the production of soluble derivatives; some dextrose is formed in the original reaction. Hydrobromic acid in ethereal solution gives furfurane derivatives. Cold dilute acids have no perceptible action on cellulose. The actions of such acids are an important auxiliary to bleaching, dyeing and printing processes, but they require careful limitation in respect of concentration and temperature. Cellulose is extremely resistant to the action of dilute alkalis: a 1–2% solution of sodium hydrate having little action at temperatures up to 150° hence the use of caustic soda, soda ash and sodium silicate in bleaching processes, i.e. for the elimination of the non-cellulose components of the raw fibres. Oxidation in acid solutions gives compounds classed as “oxycelluloses,” insoluble in water, but more or less soluble in alkalis; continued oxidation gives formic, acetic and carbonic acids. Oxidation in alkaline solution is more easily controlled and limited; solutions of bleaching powder, or more generally of alkaline hydrochlorites, receive industrial application in oxidizing the coloured impurities of the fibre, or residues left after more or less severe alkali treatments, leaving the cellulose practically unaffected. This, however, is obviously a question of conditions: this group of oxidants also oxidize to oxycellulose, and under more severe conditions to acid products, e.g. oxalic and carbonic acids. Certain bacteria also induce decompositions which are resolutions into ultimate products of the lowest molecular dimensions, as hydrogen, carbon dioxide, methane, acetic acid and butyric acid (Omeliansky) (Handb. Techn. Mykologie [F. Lafar] pp. 245-268), but generally the cellulose complex is extremely resistant to the organic ferments. Cellulose burns with a luminous flame to carbon dioxide and water; dry distillation gives a complicated mixture of gaseous and liquid products and a residue of charcoal or pseudo-carbon. Chromic acid in sulphuric acid solutions effects a complete oxidation, i.e. combustion to water and carbonic acid.
Ligno-celluloses.—These compounds have many of the characteristics of the cellulose esters; they are in effect ethereal compounds of cellulose and the quinonoid lignone complex, and the combination resists hydrolysis by weak alkalis or acids. The cellulose varies in amount from 80 to 50%, and the lignone varies inversely as the degree of lignification, that is, from the lignified bast fibre of annuals, of which jute is a type, to the dense tissues of the perennial dicotyledonous woods, typified by the beech. The empirical formula of the lignone complex varies from C19H22O9 (jute) to C26H30O10 (pine wood). In certain reactions the non-cellulose or lignone constituents are selectively converted into soluble derivatives, and may be separated as such from the cellulose which is left; for example, chlorination gives products soluble in sodium sulphite solution, by the combination of unsaturated groups of the lignone with the halogen, while digestion with bisulphite solutions at elevated temperatures (140°–160°) gives soluble sulphonated derivatives. This last reaction is employed industrially in the preparation of cellulose for paper-making from coniferous woods. These reactions are “quantitative” since they depend upon well-defined constitutional features of the lignone complex, and the resolution of the ligno-cellulose takes place with no further change in the lignone than the synthetical combination with the substituting groups. The constituent groups of the lignone specifically reacting are of benzenoid type of the probable form deduced from the similarity of the chlorinated derivatives to mairogallol, the product of the action of chlorine on pyrogallol in acetic acid solution (A. Hantzsch, Ber. 20, p. 2033). The complex contains methoxy (OCH3) groups. There is also present a residue which is readily broken down by oxidizing agents, and indeed by simple hydrolysis, to acetic acid. Another important group of actual constituents are pentosanes—partially isolated as “wood gum” by solution in alkalis—and furfural derivatives (hydroxy furfurals) derived from these. The actual constitutional relationships of these main groups, as well as the localization of the methoxy groups, are still problematical.
Certain colour reactions are characteristic, though they are in some cases reactions of certain constituents invariably present in the natural forms of the ligno-cellulose; which may be removed without affecting the essential character of the lignone complex. Aniline salts generally give a yellow coloration, dimethyl-para-phenylenediamine gives a deep red coloration, phloroglucin in hydrochloric acid gives a crimson coloration. Reactions more definitely characteristic of the lignone are:—ferric ferrocyanide, which is taken up and transformed into Prussian blue throughout the fibre, without affecting its structure, although there may be as much as a 50% gain in weight; iodine in potassium iodide solution gives a deep brown colour due to absorption of the halogen, a reaction which admits of quantitative application, i.e. as a measure of the proportion of ligno-cellulose in a fibrous mixture; nitric acid gives a deep orange yellow coloration; digested with the dilute acid (5–10% HNO3) at 50° the ligno-celluloses are entirely resolved, the lignone complex being attacked and dissolved in the form of nitroso-ketonic acids, which, on continued heating, are finally resolved to oxalic, acetic, formic and carbonic acids.
Derivatives of Ligno-cellulose.—By reaction with chlorine jute yields the derivative C19H18Cl4O9, soluble in alcohol, and in acetic acid; this derivative has the reactions of a quinone chloride. By reaction with sodium sulphite it is converted into a hydroquinone sulphonate of deep purple colour. The reaction of the ligno-celluloses (pine wood) with the bisulphites yields the soluble derivatives of the general formula C26H29O9·SO3H (containing two O·CH3 groups). Jute reacts with nitric acid in presence of sulphuric acid to form nitrates; and with acetic anhydride to form low acetates. It reacts with alkaline hydrates with structural changes similar to those obtained with cotton; and by the further action of benzoyl chloride and of carbon bisulphide upon the resulting compounds there result the corresponding benzoates and xanthates respectively. But these synthetical derivatives are mixtures of cellulose and lignone derivatives, and so far of merely theoretical interest.
Decompositions of Ligno-cellulose.—In addition to the specific resolutions above described which depend upon the distinctive chemical characters of the cellulose and lignone respectively, the following may be noted: to simple hydrolytic agents the two groups are equally resistant, therefore by boiling with dilute acids or alkalis the groups are attacked pari passu. Weak oxidants may also be used as bleaching agents to remove coloured by-products without seriously attacking the ligno-cellulose, which is obtained in its bleached form. Nitric acid of all strengths effects complete resolution. Chromic acid in dilute solutions combines with the lignone complex, but in presence of hydrolysing acids total oxidation of the lignone is determined. The principal products are oxalic, carbonic, formic and acetic acids. This reaction is an index of constitution. Generally, the lignone is attacked under many conditions and by many reagents which are without action upon cellulose, by virtue of its unsaturated constitution, and its acid and aldehydic residues.
Cuto-cellulose.—A typical cuto-cellulose is the cuticle (peel) of the apple which, when purified by repeated hydrolytic treatment and finally by alcohol and ether, gives a product of the composition C = 75.66%, H = 11.37%, O = 14.97%. Hydrolysis by strong alkalis gives stearo-cutic acid, C28H48O4, and oleo-cutic acid, C14H20O4 (Frémy). Cork is a complex mixture containing various compound celluloses: extraction with alcohol removes certain fatty alcohols and acids, and aromatic derivatives related to tannic acid; the residue is probably a mixture of cellulose, ligno-cellulose, cerin, C20H32O and suberin; the latter yields