Jump to content

Page:EB1911 - Volume 07.djvu/124

From Wikisource
This page has been proofread, but needs to be validated.
COPPER
107


chloride in the proportions necessary for the entire conversion of the iron into ferric sulphate. The heaps are moistened with ferric chloride solution, and the reaction is maintained by the liquid percolating through the heap. The liquid is run off at the base of the heaps into the precipitating tanks, where the copper is thrown down by means of metallic iron. The ferrous chloride formed at the same time is converted into ferric chloride which can be used to moisten the heaps. This conversion is effected by allowing the ferrous chloride liquors slowly to descend a tower, filled with pieces of wood, coke or quartz, where it meets an ascending current of chlorine.

The sulphate, oxide or chlorides, which are obtained from the sulphuretted ores, are lixiviated and the metal precipitated in the same manner as we have previously described.

The metal so obtained is known as “cement” copper. If it contains more than 55% of copper it is directly refined, while if it contains a lower percentage it is smelted with matte or calcined copper pyrites. The chief impurities are basic salts of iron, free iron, graphite, and sometimes silica, antimony and iron arsenates. Washing removes some of these impurities, but some copper always passes into the slimes. If much carbonaceous matter be present (and this is generally so when iron sponge is used as the precipitant) the crude product is heated to redness in the air; this burns out the carbon, and, at the same time, oxidizes a little of the copper, which must be subsequently reduced. A similar operation is conducted when arsenic is present; basic-lined reverberatory furnaces have been used for the same purpose.

Electrolytic Refining.—The principles have long been known on which is based the electrolytic separation of copper from the certain elements which generally accompany it, whether these, like silver and gold, are valuable, or, like arsenic, antimony, bismuth, selenium and tellurium, are merely impurities. But it was not until the dynamo was improved as a machine for generating large quantities of electricity at a very low cost that the electrolysis of copper could be practised on a commercial scale. To-day, by reason of other uses to which electricity is applied, electrically deposited copper of high conductivity is in ever-increasing demand, and commands a higher price than copper refined by fusion. This increase in value permits of copper with not over £2 or $10 worth of the precious metals being profitably subjected to electrolytic treatment. Thus many million ounces of silver and a great deal of gold are recovered which formerly were lost.

The earliest serious attempt to refine copper industrially was made by G. R. Elkington, whose first patent is dated 1865. He cast crude copper, as obtained from the ore, into plates which were used as anodes, sheets of electro-deposited copper forming the cathodes. Six anodes were suspended, alternately with four cathodes, in a saturated solution of copper sulphate in a cylindrical fire-clay trough, all the anodes being connected in one parallel group, and all the cathodes in another. A hundred or more jars were coupled in series, the cathodes of one to the anodes of the next, and were so arranged that with the aid of side-pipes with leaden connexions and india-rubber joints the electrolyte could, once daily, be made to circulate through them all from the top of one jar to the bottom of the next. The current from a Wilde’s dynamo was passed, apparently with a current density of 5 or 6 amperes per sq. ft., until the anodes were too crippled for further use. The cathodes, when thick enough, were either cast and rolled or sent into the market direct. Silver and other insoluble impurities collected at the bottom of the trough up to the level of the lower side-tube, and were then run off through a plug in the bottom into settling tanks, from which they were removed for metallurgical treatment. The electrolyte was used until the accumulation of iron in it was too great, but was mixed from time to time with a little water acidulated by sulphuric acid. This process is of historic interest, and in principle it is identical with that now used. The modifications introduced have been chiefly in details, in order to economize materials and labour, to ensure purity of product, and to increase the rate of deposition.

The chemistry of the process has been studied by Martin Kiliani (Berg- und Hüttenmännische Zeitung, 1885, p. 249), who found that, using the (low) current-density of 1.8 ampere per sq. ft. of cathode, and an electrolyte containing 1½ ℔ of copper sulphate and ½ ℔ of sulphuric acid per gallon, all the gold, platinum and silver present in the crude copper anode remain as metals, undissolved, in the anode slime or mud, and all the lead remains there as sulphate, formed by the action of the sulphuric acid (or SO4 ions); he found also that arsenic forms arsenious oxide, which dissolves until the solution is saturated, and then remains in the slime, from which on long standing it gradually dissolves, after conversion by secondary reactions into arsenic oxide; antimony forms a basic sulphate which in part dissolves; bismuth partly dissolves and partly remains, but the dissolved portion tends slowly to separate out as a basic salt which becomes added to the slime; cuprous oxide, sulphide and selenides remain in the slime, and very slowly pass into solution by simple chemical action; tin partly dissolves (but in part separates again as basic salt) and partly remains as basic sulphate and stannic oxide; zinc, iron, nickel and cobalt pass into solution—more readily indeed than does the copper. Of the metals which dissolve, none (except bismuth, which is rarely present in any quantity) deposits at the anode so long as the solution retains its proper proportion of copper and acid, and the current-density is not too great. Neutral solutions are to be avoided because in them silver dissolves from the anode and, being more electro-negative than copper, is deposited at the cathode, while antimony and arsenic are also deposited, imparting a dark colour to the copper. Electrolytic copper should contain at least 99.92% of metallic copper, the balance consisting mainly of oxygen with not more than 0.01% in all of lead, arsenic, antimony, bismuth and silver. Such a degree of purity is, however, unattainable unless the conditions of electrolysis are rigidly adhered to. It should be observed that the free acid is gradually neutralized, partly by chemical action on certain constituents of the slime, partly by local action between different metals of the anode, both of which effect solution independently of the current, and partly by the peroxidation (or aëration) of ferrous sulphate formed from the iron in the anode. At the same time there is a gradual substitution of other metals for copper in the solution, because although copper plus other (more electro-positive) metals are constantly dissolving at the anode, only copper is deposited at the cathode. Hence the composition and acidity of the solution, on which so much depends, must be constantly watched.

The dependence of the mechanical qualities of the copper upon the current-density employed is well known. A very weak current gives a pale and brittle deposit, but as the current-density is increased up to a certain point, the properties of the metal improve; beyond this point they deteriorate, the colour becoming darker and the deposit less coherent, until at last it is dark brown and spongy or pulverulent. The presence of even a small proportion of hydrochloric acid imparts a brown tint to the deposit. Baron H. v. Hübl (Mittheil. des k. k. militär-geograph. Inst., 1886, vol. vi. p. 51) has found that with neutral solutions a 5% solution of copper sulphate gave no good result, while with a 20% solution the best deposit was obtained with a current-density of 28 amperes per sq. ft.; with solutions containing 2% of sulphuric acid, the 5% solution gave good deposits with current-densities of 4 to 7.5 amperes, and the 20% solution with 11.5 to 37 amperes, per sq. ft. The maximum current-densities for a pure acid solution at rest were: for 15% pure copper sulphate solutions 14 to 21 amperes, and for 20% solutions 18.5 to 28 amperes, per sq. ft.; but when the solutions were kept in gentle motion these maxima could be increased to 21-28 and 28-37 amperes per sq. ft. respectively. The necessity for adjusting the current-density to the composition and treatment of the electrolyte is thus apparent. The advantage of keeping the solution in motion is due partly to the renewal of solution thus effected in the neighbourhood of the electrodes, and partly to the neutralization of the tendency of liquids undergoing electrolysis to separate into layers, due to the different specific gravities of the solutions flowing from the opposing electrodes. Such an irregular distribution of the bath, with strong copper sulphate solution from the anode at the bottom and acid solution from the cathode at the top, not only alters the conductivity in different strata and so causes irregular current-distribution, but may lead to the current-density in the upper layers being too great for the proportion of copper there present. Irregular and defective deposits are therefore obtained. Provision for circulation of solution is made in the systems of copper-refining now in use. Henry Wilde, in 1875, in depositing copper on iron printing-rollers, recognized this principle and rotated the rollers during electrolysis, thereby renewing the surfaces of metal and liquid in mutual contact, and imparting sufficient motion to the solution to prevent stratification; as an alternative he imparted motion to the electrolyte by means of propeller blades. Other workers have followed more or less on the same lines; reference may be made to the patents of F. E. and A. S. Elmore, who sought to improve the character of the deposit by burnishing during electrolysis, of E. Dumoulin, and Sherard Cowper-Coles (Engineering Review, 1905, vol. xiii. p. 392), who prefers to rotate the cathode at a speed that maintains a peripheral velocity of at least 1000 ft. per minute. Certain other inventors have applied the same principle in a different way. H. Thofehrn in America and J. C. Graham in