Page:EB1911 - Volume 08.djvu/124

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
DESTRUCTORS
109


in main flues, &c. (g) The chimney draught must be assisted with forced draught from fans or steam jet to a pressure of 11/2 in. to 2 in. under grates by water-gauge. (h) Where a destructor is required to work without risk of nuisance to the neighbouring inhabitants, its efficiency as a refuse destructor plant must be primarily kept in view in designing the works, steam-raising being regarded as a secondary consideration. Boilers should not be placed immediately over a furnace so as to present a large cooling surface, whereby the temperature of the gases is reduced before the organic matter has been thoroughly burned. (i) Where steam-power and a high fuel efficiency are desired a large percentage of CO2 should be sought in the furnaces with as little excess of air as possible, and the flue gases should be utilized in heating the air-supply to the grates, and the feed-water to the boilers. (j) Ample boiler capacity and hot-water storage feed-tanks should be included in the design where steam-power is required.

As to the initial cost of the erection of refuse destructors, few trustworthy data can be given. The outlay necessarily depends, amongst other things, upon the difficulty of preparing the site, upon the nature of the foundations required, the height of the chimney-shaft, the length of the inclined or approach Cost.roadway, and the varying prices of labour and materials in different localities. As an example may be mentioned the case of Bristol, where, in 1892, the total cost of constructing a 16-cell Fryer destructor was £11,418, of which £2909 was expended on foundations, and £1689 on the chimney-shaft; the cost of the destructor proper, buildings and approach road was therefore £6820, or about £426 per cell. The cost per ton of burning refuse in destructors depends mainly upon—(a) The price of labour in the locality, and the number of “shifts” or changes of workmen per day; (b) the type of furnace adopted; (c) the nature of the material to be consumed; (d) the interest on and repayment of capital outlay. The cost of burning ton for ton consumed, in high-temperature furnaces, including labour and repairs, is not greater than in slow-combustion destructors. The average cost of burning refuse at twenty-four different towns throughout England, exclusive of interest on the cost of the works, is 1s. 11/2d. per ton burned; the minimum cost is 6d. per ton at Bradford, and the maximum cost 2s. 10d. per ton at Battersea. At Shoreditch the cost per ton for the year ending on the 25th of March 1899, including labour, supervision, stores, repairs, &c. (but exclusive of interest on cost of works), was 2s. 6.9d. The quantity of refuse burned per cell per day of 24 hours varies from about 4 tons up to 20 tons. The ordinary low-temperature destructor, with 25 sq. ft. grate area, burns about 20 ℔ of refuse per square foot of grate area per hour, or between 5 and 6 tons per cell per 24 hours. The Meldrum destructor furnaces at Rochdale burn as much as 66 ℔ per square foot of grate area per hour, and the Beaman and Deas destructor at Llandudno 71.7 ℔ per square foot per hour. The amount, however, always depends materially on the care observed in stoking, the nature of the material, the frequency of removal of clinker, and on the question whether the whole of the refuse passed into the furnace is thoroughly cremated.

The amount of residue in the shape of clinker and fine ash varies from 22 to 37% of the bulk dealt with. From 25 to 30% is a very usual amount. At Shoreditch, where the refuse consists of about 8% of straw, paper, shavings, &c., the residue contains about 29% clinker, 2.7% fine ash, .5% flue dust, and .6% Residues.old tins, making a total residue of 32.8%. As the residuum amounts to from one-fourth to one-third of the total bulk of the refuse dealt with, it is a question of the utmost importance that some profitable, or at least inexpensive, means should be devised for its regular disposal. Among other purposes, it has been used for bottoming for macadamized roads, for the manufacture of concrete, for making paving slabs, for forming suburban footpaths or cinder footwalks, and for the manufacture of mortar. The last is a very general, and in many places profitable, mode of disposal. An entirely new outlet has also arisen for the disposal of good well-vitrified destructor clinker in connexion with the construction of bacteria beds for sewage disposal, and in many districts its value has, by this means, become greatly enhanced.

Through defects in the design and management of many of the early destructors complaints of nuisance frequently arose, and these have, to some extent, brought destructor installations into disrepute. Although some of the older furnaces were decided offenders in this respect, that is by no means the case with the modern improved type of high-temperature furnace; and often, were it not for the great prominence in the landscape of a tall chimney-shaft, the existence of a refuse destructor in a neighbourhood would not be generally known to the inhabitants. A modern furnace, properly designed and worked, will give rise to no nuisance, and may be safely erected in the midst of a populous neighbourhood. To ensure the perfect cremation of the refuse and of the gases given off, forced draught is essential. Forced draught. This is supplied either as air draught delivered from a rapidly revolving fan, or as steam blast, as in the Horsfall steam jet or the Meldrum blower. With a forced blast less air is required to obtain complete combustion than by chimney draught. The forced draught grate requires little more than the quantity theoretically necessary, while with chimney draught more than double the theoretical amount of air must be supplied. With forced draught, too, a much higher temperature is attained, and if it is properly worked, little or no cold air will enter the furnaces during stoking operations. As far as possible a balance of pressure in the cells during clinkering should be maintained just sufficient to prevent an inrush of cold air through the flues. The forced draught pressure should not exceed 2 in. water-gauge. The efficiency of the combustion in the furnace is conveniently measured by the “Econometer,” which registers continuously and automatically the proportion of CO2 passing away in the waste gases; the higher the percentage of CO2 the more efficient the furnace, provided there is no formation of CO, the presence of which would indicate incomplete combustion. The theoretical maximum of CO2 for refuse burning is about 20%; and, by maintaining an even clean fire, by admitting secondary air over the fire, and by regulating the dampers or the air-pressure in the ash-pit, an amount approximating to this percentage may be attained in a well-designed furnace if properly worked. If the proportion of free oxygen (i.e. excess of air) is large, more air is passed through the furnace than is required for complete combustion, and the heating of this excess is clearly a waste of heat. The position of the econometer in testing should be as near the furnace as possible, as there may be considerable air leakage through the brickwork of the flues.

The air supply to modern furnaces is usually delivered hot, the inlet air being first passed through an air-heater the temperature of which is maintained by the waste gases in the main flue.

The modern high-temperature destructor, to render the refuse and gases perfectly innocuous and harmless, is worked at a temperature varying from 1250° to 2000° F., and the maintenance of such temperatures has very naturally suggested the possibility of utilizing this heat-energy for the production Calorific value.of steam-power. Experience shows that a considerable amount of energy may be derived from steam-raising destructor stations, amply justifying a reasonable increase of expenditure on plant and labour. The actual calorific value of the refuse material necessarily varies, but, as a general average, with suitably designed and properly managed plant, an evaporation of 1 ℔ of water per pound of refuse burned is a result which may be readily attained, and affords a basis of calculation which engineers may safely adopt in practice. Many destructor steam-raising plants, however, give considerably higher results, evaporations approaching 2 ℔ of water per pound of refuse being often met with under favourable conditions.

From actual experience it may be accepted, therefore, that the calorific value of unscreened house refuse varies from 1 to 2 ℔ of water evaporated per pound of refuse burned, the exact proportion depending upon the quality and condition of the material dealt with. Taking the evaporative power of coal at 10 ℔ of water per pound of coal, this gives for domestic house refuse a value of from 1/10 to 1/5 that of coal; or, with coal at 20s. per ton, refuse has a commercial value of from 2s. to 4s. per ton. In London the quantity of house refuse amounts to about 11/4 million tons per annum, which is equivalent to from 4 cwt. to 5 cwt. per head per annum. If it be burned in furnaces giving an evaporation of 1 ℔ of water per pound of refuse, it would yield a total power annually of about 138 million brake horse-power hours, and equivalent cost of coal at 20s. per ton for this amount of power even when calculated upon the very low estimate of 2 ℔[1] of coal per brake horse-power hour, works out at over £123,000. On the same basis, the refuse of a medium-sized town, with, say, a population of 70,000 yielding refuse at the rate of 5 cwt. per head per annum, would afford 112 indicated horse-power per ton burned, and the total indicated horse-power hours per annum would be

70,000 ✕ 5 cwt./20 ✕ 112=1,960,000 I.H.P. hours annually.

If this were applied to the production of electric energy, the electrical horse-power hours would be (with a dynamo efficiency of 90%)

1,960,000 ✕ 90/100=1,764,000 E.H.P. hours per annum;

and the watt-hours per annum at the central station would be

1,764,000 ✕ 746=1,315,944,000.

Allowing for a loss of 10% in distribution, this would give 1,184,349,600 watt-hours available in lamps, or with 8-candle-power lamps taking 30 watts of current per lamp, we should have 1,184,349,600 watt-hours/30 watts=39,478,320 8-c.p. lamp-hours per annum; that is, 39,478,320/70,000 population=563 8-c.p. lamp hours per annum per head of population. Taking the loss due to the storage which would be necessary at 20% on three-quarters of the total or 15% upon the whole, there would be 478 8-c.p. lamp-hours per annum per head of the population: i.e. if the power developed from the refuse were fully utilized, it would supply electric light at the rate of one 8-c.p. lamp per head of the population for about 11/3 hours for every night of the year.

In actual practice, when the electric energy is for the purposes of lighting only, difficulty has been experienced in fully utilizing the thermal energy from a destructor plant owing to the want of adequate means of storage either of the thermal or of the electric energy. A destructor station usually yields a Difficulties.fairly definite amount of thermal energy uniformly throughout the 24 hours, while the consumption of electric-lighting current is extremely


  1. With medium-sized steam plants, a consumption of 4 ℔ of coal per brake horse-power per hour is a very usual performance.