Page:EB1911 - Volume 08.djvu/169

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
154
DIAL

for which they are available, and they should not be used more than 4 or 5 m. north or south of the place for which they were constructed.

We shall briefly describe two portable dials which were in actual use.

Fig. 7.

Dial on a Cylinder.—A hollow cylinder of metal (fig. 7), 4 or 5 in. high, and about an inch in diameter, has a lid which admits of tolerably easy rotation. A hole in the lid receives the style shaped somewhat like a bayonet; and the straight part of the style, which, on account of the two bends, is lower than the lid, projects horizontally out from the cylinder to a distance of 1 or 11/2 in. When not in use the style would be taken out and placed inside the cylinder.

A horizontal circle is traced on the cylinder opposite the projecting style, and this circle is divided into 36 approximately equidistant intervals.[1] These intervals represent spaces of time, and to each division is assigned a date, so that each month has three dates marked as follows:—January 10, 20, 31; February 10, 20, 28; March 10, 20, 31; April 10, 20, 30, and so on,—always the 10th, the 20th, and the last day of each month.

Through each point of division a vertical line parallel to the axis of the cylinder is drawn from top to bottom. Now it will be readily understood that if, upon one of these days, the lid be turned, so as to bring the style exactly opposite the date, and if the dial be then placed on a horizontal table so as to receive sunlight, and turned round bodily until the shadow of the style falls exactly on the vertical line below it, the shadow will terminate at some definite point of this line, the position of which point will depend on the length of the style—that is, the distance of its end from the surface of the cylinder—and on the altitude of the sun at that instant. Suppose that the observations are continued all day, the cylinder being very gradually turned so that the style may always face the sun, and suppose that marks are made on the vertical line to show the extremity of the shadow at each exact hour from sunrise to sunset-these times being taken from a good fixed sun-dial,—then it is obvious that the next year, on the same date, the sun’s declination being about the same, and the observer in about the same latitude, the marks made the previous year will serve to tell the time all that day.

What we have said above was merely to make the principle of the instrument clear, for it is evident that this mode of marking, which would require a whole year’s sunshine and hourly observation, cannot be the method employed.

The positions of the marks are, in fact, obtained by calculation. Corresponding to a given date, the declination of the sun is taken from the almanac, and this, together with the latitude of the place and the length of the style, will constitute the necessary data for computing the length of the shadow, that is, the distance of the mark below the style for each successive hour.

We have assumed above that the declination of the sun is the same at the same date in different years. This is not quite correct, but, if the dates be taken for the second year after leap year, the results will be sufficiently approximate.

When all the hour-marks have been placed opposite to their respective dates, then a continuous curve, joining the corresponding hour-points, will serve to find the time for a day intermediate to those set down, the lid being turned till the style occupy a proper position between the two divisions. The horizontality of the surface on which the instrument rests is a very necessary condition, especially in summer, when, the shadow of the style being long, the extreme end will shift rapidly for a small deviation from the vertical, and render the reading uncertain. The dial can also be used by holding it up by a small ring in the top of the lid, and probably the vertically is better ensured in that way.

Portable Dial on a Card.—This neat and very ingenious dial is attributed by Ozanam to a Jesuit Father, De Saint Rigaud, and probably dates from the early part of the 17th century. Ozanam says that it was sometimes called the capuchin, from some fancied resemblance to a cowl thrown back.

Construction.—Draw a straight line ACB parallel to the top of the card (fig. 8) and another DCE at right angles to it; with C as centre, and any convenient radius CA, describe the semicircle AEB below the horizontal. Divide the whole arc AEB into 12 equal parts at the points r, s, t, &c., and through these points draw perpendiculars to the diameter ACB; these lines will be the hour-lines, viz. the line through r will be the XI . . . I line, the line through s the X . . . II line, and so on; the hour-line of noon will be the point A itself; by subdivision of the small arcs Ar, rs, st, &c., we may draw the hour-lines corresponding to halves and quarters, but this only where it can be done without confusion.

Draw ASD making with AC an angle equal to the latitude of the place, and let it meet EC in D, through which point draw FDG at right angles to AD.

Fig. 8.

With centre A, and any convenient radius AS, describe an arc of circle RST, and graduate this arc by marking degree divisions on it, extending from 0° at S to 231/2° on each side at R and T. Next determine the points on the straight line FDG where radii drawn from A to the degree divisions on the arc would cross it, and carefully mark these crossings.

The divisions of RST are to correspond to the sun’s declination, south declinations on RS and north declinations on ST. In the other hemisphere of the earth this would be reversed; the north declinations would be on the upper half.

Now, taking a second year after leap year (because the declinations of that year are about the mean of each set of four years), find the days of the month when the sun has these different declinations, and place these dates, or so many of them as can be shown without confusion, opposite the corresponding marks on FDG. Draw the sun-line at the top of the card parallel to the line ACB; and, near the extremity, to the right, draw any small figure intended to form, as it were, a door of which a b shall be the hinge. Care must be taken that this hinge is exactly at right angles to the sun-line. Make a fine open slit c d right through the card and extending from the hinge to a short distance on the door,—the centre line of this slit coinciding accurately with the sun-line. Now, cut the door completely through the card; except, of course, along the hinge, which, when the card is thick, should be partly cut through at the back, to facilitate the opening. Cut the card right through along the line FDG, and pass a thread carrying a little plummet W and a very small bead P; the bead having sufficient friction with the thread to retain any position when acted on only by its own weight, but sliding easily along the thread when moved by the hand. At the back of the card the thread terminates in a knot to hinder it from being drawn through; or better, because giving more friction and a better hold, it passes through the centre of a small disk of card—a fraction of an inch in diameter—and, by a knot, is made fast at the back of the disk.

To complete the construction,—with the centres F and G, and

  1. Strict equality is not necessary, as the observations made are on the vertical line through each division-point, without reference to the others. It is not even requisite that the divisions should go completely and exactly round the cylinder, although they were always so drawn, and both these conditions were insisted upon in the directions for the construction.