It is of course possible that energy may have given off from the body in other forms than heat and external muscular work. It is conceivable, for example, that intellectual activity may involve the transformation of physical energy, and that the energy involved may be eliminated in some form now unknown. But if the body did give off energy which was not measured in these experiments, the quantity must have been extremely small. It seems fair to infer from the results obtained that the metabolism of energy in the body occurred in conformity with the law of the conservation of energy.
3. Composition of Food Materials.—The composition of food is determined by chemical analyses, the results of which are conventionally expressed in terms of the nutritive ingredients previously described. As a result of an enormous amount of such investigation in recent years, the kinds and proportions of nutrients in our common sorts of food are well known. Average values for percentage composition of some ordinary food materials are shown in Table I. (Table I. also includes figures for fuel value.)
It will be observed that different kinds of food materials vary widely in their proportions of nutrients. In general the animal foods contain the most protein and fats, and vegetable foods are rich in carbohydrates. The chief nutrient of lean meat and fish is protein; but in medium fat meats the proportion of fat is as large as that of protein, and in the fatter meats it is larger. Cheese is rich in both protein and fat. Among the vegetable foods, dried beans and peas are especially rich in protein. The proportion in oatmeal is also fairly large, in wheat it is moderate, and in maize meal and rice it is rather small. Oats contain more oil than any of the common cereals, but in none of them is the proportion especially large. The most abundant nutrient in all the cereals is starch, which comprises from two-thirds to three-fourths or more of their total nutritive substance. Cotton-seed is rich in edible oil, and so are olives. Some of the nuts contain fairly large proportions of both protein and fat. The nutrient of potatoes is starch, present in fair proportion. Fruits contain considerable carbohydrates, chiefly sugar. Green vegetables are not of much account as sources of any of the nutrients or energy.
Similar food materials from different sources may also differ considerably in composition. This is especially true of meats. Thus, the leaner portions from a fat animal may contain nearly as much fat as the fatter portions from a lean animal. The data here presented are largely those for American food products, but the available analyses of English food materials indicate that the latter differ but little from the former in composition. The analyses of meats produced in Europe imply that they commonly contain somewhat less fat and more water, and often more protein, than American meats. The meats of English production compare with the American more than with the European meats. Similar vegetable foods from the different countries do not differ so much in composition.
4. Digestibility or Availability of Food Materials.—The value of any food material for nutriment depends not merely upon the kinds and amounts of nutrients it contains, but also upon the ease and convenience with which the nutrients may be digested, and especially upon the proportion of the nutrients that will be actually digested and absorbed. Thus, two foods may contain equal amounts of the same nutrient, but the one most easily digested will really be of most value to the body, because less effort is necessary to utilize it. Considerable study of this factor is being made, and much valuable information is accumulating, but it is of more especial importance in cases of disordered digestion.
The digestibility of food in the sense of thoroughness of digestion, however, is of particular importance in the present discussion. Only that portion of the food that is digested and absorbed is available to the body for the building of tissue and the production of energy. Not all the food eaten is thus actually digested; undigested material is excreted in the faeces. The thoroughness of digestion is determined experimentally by weighing and analysing the food eaten and the faeces pertaining to it. The difference between the corresponding ingredients of the two is commonly considered to represent the amounts of the ingredients digested. Expressed in percentages, these are called coefficients of digestibility. See Table II.
Table II.—Coefficients of Digestibility (or Availability)
of Nutrients in Different Classes of Food Materials.
Kind of Food. | Protein. | Fat. | Carbohydrates. |
% | % | % | |
Meats | 98 | 98 | · · |
Fish | 96 | 97 | · · |
Poultry | 96 | 97 | · · |
Eggs | 97 | 98 | · · |
Dairy products | 97 | 96 | 98 |
Total animal food of mixed diet | 97 | 97 | 98 |
Potatoes | 73 | · · | 98 |
Beets, carrots, &c. | 72 | · · | 97 |
Cabbage, lettuce, &c. | · · | · · | 83 |
Legumes | 78 | 90 | 95 |
Oatmeal | 78 | 90 | 97 |
Corn meal | 80 | · · | 99 |
Wheat meals without bran | 83 | · · | 93 |
Wheat meals with bran | 75 | · · | 92 |
White bread | 88 | · · | 98 |
Entire wheat bread | 82 | · · | 94 |
Graham bread | 76 | · · | 90 |
Rice | 76 | · · | 91 |
Fruits and nuts | 80 | 86 | 96 |
Sugars and starches | · · | · · | 98 |
Total vegetable food of mixed diet | 85 | 90 | 97 |
Total food of mixed diet | 92 | 95 | 97 |
Such a method is not strictly accurate, because the faeces do not consist entirely of undigested food but contain in addition to this the so-called metabolic products, which include the residuum of digestive juices not resorbed, fragments of intestinal epithelium, &c. Since there is as yet no satisfactory method of separating these constituents of the excreta, the actual digestibility of the food is not determined. It has been suggested that since these materials must originally come from food, they represent, when expressed in terms of food ingredients, the cost of digestion; hence that the values determined as above explained represent the portion of food available to the body for the building of tissue and the yielding of energy, and what is commonly designated as digestibility should be called availability. Other writers retain the term “digestibility,” but express the results as “apparent digestibility,” until more knowledge regarding the metabolic products of the excreta is available and the actual digestibility may be ascertained.
Experimental inquiry of this nature has been very active in recent years, especially in Europe, the United States and Japan; and the results of considerably over 1000 digestion experiments with single foods or combinations of food materials are available. These were mostly with men, but some were with women and with children. The larger part of these have been taken into account in the following estimations of the digestibility of the nutrients in different classes of food materials. The figures here shown are subject to revision as experimental data accumulate. They are not to be taken as exact measures of the digestibility (or availability) of every kind of food in each given class, but they probably represent fairly well the average digestibility of the classes of food materials as ordinarily utilized in the mixed diet.
5. Fuel Value of Food.—The potential energy of food is commonly measured as the amount of heat evolved when the food is completely oxidized. In the laboratory this is determined by burning the food in oxygen in a calorimeter. The results, which are known as the heat of combustion of the food, are