Page:EB1911 - Volume 08.djvu/828

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
EARTH, FIGURE OF THE
801

in other words, the constellations are continually shifting with regard to the equinoctial points; at one time the vernal equinox Aries was in the constellations of that name; it is now in Pisces, and will then pass into Aquarius. The pole star, i.e. the star towards which the Earth’s axis points, is also shifting owing to precession; in about 2700 B.C. the Chinese observed α Draconis as the pole star (at present α Ursae minoris occupies this position and will do so until 3500); in 13600 Vega (α Lyrae) the brightest star in the Northern hemisphere, will be nearest.

Precession is the result of the Sun and the Moon’s attraction on the Earth not being a single force through its centre of gravity. If the Earth were a homogeneous sphere the attractions would act through the centre, and such forces would have no effect upon the rotation about the centre of gravity, but the Earth being spheroidal the equatorial band which stands up as it were beyond the surface of a sphere is more strongly attracted, with the result that the axis undergoes a tilting. The precession due to the Sun is termed the solar precession and that due to the Moon the lunar precession; the joint effect (two-thirds of which is due to the Moon) is the luni-solar precession. Solar precession is greatest at the solstices and zero at the equinoxes; the part of luni-solar precession due to the Moon varies with the position of the Moon in its orbit. The obliquity is unchanged by precession (see Precession of the Equinoxes).

Nutation.—In treating precession we have stated that the axis of the Earth traces a cone, and it follows that the pole describes a circle (approximately) on the celestial sphere, about the pole of the ecliptic. This is not quite true. Irregularities in the attracting forces which occasion precession also cause a slight oscillation backwards and forwards over the mean precessional path of the pole, the pole tracing a wavy line or nodding. Both the Sun and Moon contribute to this effect. Solar nutation depends upon the position of the Sun on the ecliptic; its period is therefore 1 year, and in extent it is only 1·2″; lunar nutation depends upon the position of the Moon’s nodes; its period is therefore about 18·6 years, the time of revolution of the nodes, and its extent is 9·2″. There is also given to the obliquity a small oscillation to and fro. Nutation is one of the great discoveries of James Bradley (1747).

Planetary Precession.—So far we have regarded the ecliptic as absolutely fixed, and treated precession as a real motion of the equator. The ecliptic (q.v.), however, is itself subject to a motion, due to the attractions of the planets on the Earth. This effect also displaces the equinoctial points. Its annual value is 0·13″. The term General Precession in longitude is given to the displacement of the intersection of the equator with the apparent ecliptic on the latter. The standard value is 50·2453″, which prevailed in 1850, and the value at 1850 + t, i.e. the constant of precession, is 50·2453″ + 0·0002225″ t. This value is also liable to a very small change. The nutation of the obliquity at time 1850 + t is given by the formula 23° 27′ 32·0″ − 0·47″ t. Complete expressions for these functions are given in Newcomb’s Spherical Astronomy (1908), and in the Nautical Almanac.

The variation of the line of apsides is the name given to the motion of the major axis of the Earth’s orbit along the ecliptic. It is due to the general influence of the planets, and the revolution is effected in 21,000 years.

The variation of the eccentricity denotes an oscillation of the form of the Earth’s orbit between a circle and ellipse. This followed the mathematical researches of Lagrange and Leverrier. It was suggested by Sir John Herschel in 1830 that this variation might occasion great climatic changes, and James Croll developed the theory as affording a solution of the glacial periods in geology (q.v.).

Variation of Latitude.—Another secular motion of the Earth is due to the fact that the axis of rotation is not rigidly fixed within it, but its polar extremities wander in a circle of about 50 ft. diameter. This oscillation brings about a variability in terrestrial latitudes, hence the name. Euler showed mathematically that such an oscillation existed, and, making certain assumptions as to the rigidity of the Earth, deduced that its period was 305 days; S. C. Chandler, from 1890 onwards, deduced from observations of the stars a period of 428 days; and Simon Newcomb explained the deviation of these periods by pointing out that Euler’s assumption of a perfectly rigid Earth is not in accordance with fact. For details of this intricate subject see the articles Latitude and Earth, Figure of the.

4. Evolution and Age.—In its earliest history the mass now consolidated as the Earth and Moon was part of a vast nebulous aggregate, which in the course of time formed a central nucleus—our Sun—which shed its outer layers in such a manner as to form the solar system (see Nebular Theory). The moon may have been formed from the Earth in a similar manner, but the theory of tidal friction suggests the elongation of the Earth along an equatorial axis to form a pear-shaped figure, and that in the course of time the protuberance shot off to form the Moon (see Tide). The age of the Earth has been investigated from several directions, as have also associated questions related to climatic changes, internal temperature, orientation of the land and water (permanence of oceans and continents), &c. These problems are treated in the articles Geology and Geography.


EARTH, FIGURE OF THE. The determination of the figure of the earth is a problem of the highest importance in astronomy, inasmuch as the diameter of the earth is the unit to which all celestial distances must be referred.

Historical.

Reasoning from the uniform level appearance of the horizon, the variations in altitude of the circumpolar stars as one travels towards the north or south, the disappearance of a ship standing out to sea, and perhaps other phenomena, the earliest astronomers regarded the earth as a sphere, and they endeavoured to ascertain its dimensions. Aristotle relates that the mathematicians had found the circumference to be 400,000 stadia (about 46,000 miles). But Eratosthenes (c. 250 B.C.) appears to have been the first who entertained an accurate idea of the principles on which the determination of the figure of the earth really depends, and attempted to reduce them to practice. His results were very inaccurate, but his method is the same as that which is followed at the present day—depending, in fact, on the comparison of a line measured on the earth’s surface with the corresponding arc of the heavens. He observed that at Syene in Upper Egypt, on the day of the summer solstice, the sun was exactly vertical, whilst at Alexandria at the same season of the year its zenith distance was 7° 12′, or one-fiftieth of the circumference of a circle. He assumed that these places were on the same meridian; and, reckoning their distance apart as 5000 stadia, he inferred that the circumference of the earth was 250,000 stadia (about 29,000 miles). A similar attempt was made by Posidonius, who adopted a method which differed from that of Eratosthenes only in using a star instead of the sun. He obtained 240,000 stadia (about 27,600 miles) for the circumference. Ptolemy in his Geography assigns the length of the degree as 500 stadia.

The Arabs also investigated the question of the earth’s magnitude. The caliph Abdallah al Mamun (A.D. 814), having fixed on a spot in the plains of Mesopotamia, despatched one company of astronomers northwards and another southwards, measuring the journey by rods, until each found the altitude of the pole to have changed one degree. But the result of this measurement does not appear to have been very satisfactory. From this time the subject seems to have attracted no attention until about 1500, when Jean Fernel (1497–1558), a Frenchman, measured a distance in the direction of the meridian near Paris by counting the number of revolutions of the wheel of a carriage. His astronomical observations were made with a triangle used as a quadrant, and his resulting length of a degree was very near the truth.

Willebrord Snell[1] substituted a chain of triangles for actual linear measurement. He measured his base line on the frozen surface of the meadows near Leiden, and measured the angles of his triangles, which lay between Alkmaar and Bergen-op-Zoom, with a quadrant and semicircles. He took the precaution of

  1. Eratosthenes Batavus, seu de terrae ambitus vera quantitate suscitatus, a Willebrordo Snellio, Lugduni-Batavorum (1617).