Page:EB1911 - Volume 08.djvu/846

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
EARTHQUAKE
819

due to the terrible fire which followed the earthquake and was beyond control owing to the destruction of the system of water-supply.

Immediately after the catastrophe a California Earthquake Investigation Committee was appointed by the governor of the state; and the American Association for the Advancement of Science afterwards instituted a Seismological Committee. The elaborate Report of the State Investigation Committee, by the chairman, Professor A. C. Lawson, was published in 1908.

On the 17th of August 1906 a disastrous earthquake occurred at Valparaiso, and the year 1906 was marked generally by exceptional seismic activity.

The Jamaica earthquake of the 14th of January 1907 appears to have accompanied movement of rock along an east and west fracture or series of fractures under the sea a few miles from the city of Kingston. The statue of Queen Victoria at Kingston was turned upon its pedestal the eighth of a revolution.

A terrible earthquake occurred in Calabria and Sicily on December 28, 1908, practically destroying Messina and Reggio. According to the official returns the total loss of life was 77,283. Whilst the principal centre seems to have been in the Strait of Messina, whence the disturbance is generally known as the Messina Messina earthquake, 1908.earthquake, there were independent centres in the Calabrian peninsula, a country which had been visited by severe earthquakes not long previously, namely on September 8, 1905, and October 23, 1907. The principal shock of the great Messina earthquake of 1908 occurred at 5.21 a.m. (4.21 Greenwich time), and had a duration of from 30 to 40 seconds. Neither during nor immediately before the catastrophe was there any special volcanic disturbance at Etna or at Stromboli, but it is believed that there must have been movement along a great plane of weakness in the neighbourhood of the Strait of Messina, which has been studied by E. Cortese. The sea-floor in the strait probably suffered great disturbance, resulting in the remarkable movement of water observed on the coast. At first the sea retired, and then a great wave rolled in, followed by others generally of decreasing amplitude, though at Catania the second was said to have been greater than the first. At Messina the height of the great wave was 2.70 metres, whilst at Ali and Giardini it reached 8.40 metres and at San Alessio as much as 11.7 metres. At Malta the tide-gauge recorded a wave of 0.91 metre. The depth of the chief earthquake-centre was estimated by Dr E. Oddone at about 9 kilometres. The earthquake and accompanying phenomena were studied also by Professor A. Riccò, Dr M. Baratta and Professor G. Platania and by Dr F. Omori of Tokyo. After the great disturbance, shocks continued to affect the region intermittently for several months. In certain respects the earthquake of 1908 presented much resemblance to the great Calabrian catastrophe of 1783.

It has been proposed by R. D. Oldham that the disturbance which causes the fracture and permanent displacement of the rocks during an earthquake should be called an “earthshake,” leaving the term earthquake especially for the vibratory motion. The movement of the earthquake is molecular, whilst that of the earthshake is molar. Subsequently he suggested the terms mochleusis and orchesis (μοχλέυω, I heave; ὀρχέομαι, I dance), to denote respectively the molar and the molecular movement, retaining the word earthquake for use in its ordinary sense.

In most earthquakes the proximate cause is generally regarded as the fracture and sudden movement of underground rock-masses. Disturbances of this type are known as “tectonic” earthquakes, since they are connected with the folding and faulting of the rocks of the earth’s crust. They indicate a relief of the strain to which the rock-masses are subjected by mountain-making and other crustal movements, and they are consequently apt to occur along the steep face of a table-land or the margin of a continent with a great slope from land to sea. In many cases the immediate seat of the originating impulse is located beneath the sea, giving rise to submarine disturbances which have been called “seaquakes.” Much attention has been given to these suboceanic disturbances by Professor E. Rudolph.

Professor J. H. Jeans has pointed out that the regions of the earth’s crust most affected by earthquakes lie on a great circle corresponding with the equator of the slightly pear-shaped figure that he assigns to the earth. This would represent a belt of weakness, subject to crushing, from the tendency of the pear to pass into a spherical or spheroidal form under the action of internal stresses. According to the comte de Montessus de Ballore, the regions of maximum seismic instability appear to be arranged on two great circles, inclined to each other at about 67°. These are the Circumpacific and Mediterranean zones.

Maps of the world, showing the origins of large earthquakes each year, accompany the Annual Reports of the Seismological Committee of the British Association, drawn up by Professor Milne. It is important to note that Professor Milne has shown a relationship between earthquake-frequency and the wandering of the earth’s pole from its mean position. Earthquakes seem to have been most frequent when the displacement of the pole has been comparatively great, or when the change in the direction of movement has been marked. Valuable earthquake catalogues have been compiled at various times by Alexis Perrey, R. and J. W. Mallet, John Milne, T. Oldham, C. W. C. Fuchs, F. de Montessus de Ballore and others.

Such earthquakes as are felt from time to time in Great Britain may generally be traced to the formation of faults, or rather to incidents in the growth of old faults. The East Anglian earthquake of the 22nd of April 1884—the most disastrous that had occurred in the British Isles for centuries—was investigated by British earthquakes.Prof. R. Meldola and W. White on behalf of the Essex Field Club. The shocks probably proceeded from two foci—one near the villages of Peldon and Abberton, the other near Wivenhoe and Rowhedge, in N.E. Essex. It is believed that the superficial disturbance resulted from rupture of rocks along a deep fault. An attempt has been made by H. Darwin, for the Seismological Committee of the British Association, to detect and measure any gradual movement of the strata along a fault, by observation at the Ridgeway fault, near Upway, in Dorsetshire. Dr C. Davison in studying the earthquakes which have originated in Britain since 1889 finds that several have been “twins.” A twin earthquake has two maxima of intensity proceeding from two foci, whereas a double earthquake has its successive impulses from what is practically a single focus. The Hereford earthquake of December 1896, which resulted in great structural damage, was a twin, having one epicentre near Hereford and the other near Ross. Davison refers it to a slip along a fault-plane between the anticlinal areas of Woolhope and May Hill; and according to the same authority the Inverness earthquake of the 18th of September 1901 was referable to movement along a fault between Loch Ness and Inverness. The South Wales earthquake of June 27, 1906, was probably due to movement connected with the Armorican system of folds, striking in an east and west direction.

It may be noted that when a slip occurs along a fault, the displacement underground may be but slight and may die out before reaching the surface, so that no scarp is formed. In connexion, however, with a seismic disturbance of the first magnitude the superficial features may be markedly affected. Thus, the great Japan earthquake of October 1891—known often as the Mino-Owari earthquake—was connected with the formation or development of a fault which, according to Professor B. Koto, was traced on the surface for a distance of nearly 50 m. and presented in places a scarp with a vertical throw of as much as 20 ft., while probably the maximum displacement underground was very much greater.

Although most earthquakes seem to be of tectonic type, there are some which are evidently connected, directly or indirectly, with volcanic activity (see Volcano). Such, it is commonly believed, were the earthquakes which disturbed the Isle of Ischia in 1881 and 1883, and were studied by Professor J. Johnston-Lavis and G. Mercalli. In addition to the tectonic and volcanic types, there are occasional earthquakes of minor importance which may be referred to the collapse of the roof of