partially true. A disastrous shock may unnerve a whole community. Effects of this nature, however, differ in a marked manner with different nationalities. After the shock of 1891, when Japan lost 9960 of its inhabitants, amongst the wounded indications of mental excitement were shown in spinal and other trouble. Notwithstanding the lightheartedness of this particular nation, it is difficult to imagine that the long series of seismic effects chronicled in Japanese history, which culminated in 1896 in the loss of 29,000 lives by sea-waves, has been without some effect upon its mental and moral character. Several earthquakes are annually commemorated by special services at temples. In bygone times governments have recognized earthquakes as visitations of an angry deity, whom they have endeavoured to appease by repealing stringent laws and taxes. In other countries the sermons which have been preached to show that the tremblings of the world were visitations consequent on impiety, and the prayers which have been formulated to ward off disasters in the future, far exceed in number the earthquakes which gave rise to them. In 1755 many of the English clergy held the view that Lisbon was destroyed because its inhabitants were Catholics, whilst the survivors from that disaster attributed their misfortune to the fact that they had tolerated a few Protestant heretics in their midst. To avoid a recurrence of disaster certain of these were baptized by force. In the myths relating to underground monsters and personages that are said to be the cause of earthquakes we see the direct effects which exhibitions of seismic and volcanic activity have produced upon the imagination. The beliefs, or more properly, perhaps, the poetical fancies, thus engendered have exhibited themselves in various forms. Beneath Japan there is said to be a catfish, which in other countries is replaced by a mole, a hog, an elephant or other living creature, which when it is restless shakes the globe. The Kamchadales picture a subterranean deity called Tuil, who in Scandinavian mythology is represented by the evil genius Loki. We have only to think of the reference in the Decalogue forbidding the making of graven images of that which is in the earth beneath, to see in early Biblical history evidence of a subterranean mythology; and it seems probable that the same causes which led to the creation of Pluto, Vulcan and Poseidon gave rise to practices condemned by Moses.
Perhaps the greatest practical benefits derived from seismological investigations relate to important changes and new principles which have been introduced into the arts of the engineer and builder when constructing in earthquake countries. The new rules and formulae, rather than being theoretical deductions from Building to withstand earthquakes.hypotheses, are the outcome of observation and experiment. True measures of earthquake motion have been given to us by modern seismometers, with the result that seismic destructivity can be accurately expressed in mechanical units. From observation we now know the greatest acceleration and maximum velocity of an earth particle likely to be encountered; and these are measures of the destructivity. The engineer is therefore dealing with known forces, and he has to bear in mind that these are chiefly applied in a horizontal direction. A formula connecting the acceleration requisite to overturn bodies of different dimensions has been given. The acceleration which will fracture or shatter a column firmly fixed at its foundation to the moving earth may be expressed as follows:—
where
a=the acceleration per sec. per sec.
F=the force of cohesion, or force per unit surface, which when gradually applied produces fracture.
A=area of base fractured.
B=thickness of the column.
f= height of centre of gravity of column above the fractured base.
w=the weight of the portion broken off.
With this formula and its derivatives we are enabled to state the height to which a wall, for example, may be built capable of resisting any assumed acceleration. Experience has shown that yielding first shows itself at the base of a pier, a wall or a building, and it is therefore clear that the lower portion of such structures should be of greater dimensions or stronger than that above. Piers having these increased dimensions below, and tapering upwards in a proper manner, so that every horizontal section is sufficiently strong to resist the effects of the inertia of its superstructure, are employed to carry railways in Japan. In that country cast-iron piers are things of the past, whilst piers of masonry, together with their foundations, no longer follow the rules of ordinary engineering practice.
After flood, fire, earthquake, or when opportunity presents itself, changes are introduced in the construction of ordinary buildings. In a so-called earthquake-proof house, although externally it is similar to other dwellings, we find rafters running from the ridge pole to the floor sills, an exceedingly light roof, iron straps and sockets replacing mortices and tenons, and many other departures from ordinary rules. Masonry arches for bridges or arched openings in walls (unless protected by lintels), heavy gables, ornamental copings, cappings for chimneys, have by their repeated failure shown that they are undesirable features for construction in earthquake countries. As sites for buildings it is well to avoid soft ground, on which the movement is always greater than on hard ground. Excessive movement also takes place along the face of unsupported openings, and for this reason the edges of scarps, bluffs, cuttings and river-banks are localities to be avoided. In short, the rules and precautions which have to be recognized so as to avoid or mitigate the effects of earthquake movement are so numerous that students of engineering and architecture in Japan receive a special course of lectures on this subject. When it is remembered that a large earthquake may entail a loss of life greater than that which takes place in many wars, and that for the reconstruction of ordinary buildings, factories and public works an expenditure of several million pounds sterling is required, the importance of these studies cannot be overrated. Severe earthquakes are fortunately unknown in the British Isles, but we have simply to turn our eyes to earthquake-shaken colonies and lands in close commercial touch with Great Britain to realize the importance of mitigating such disasters as much as possible, and any endeavour to obviate the wholesale destruction of life should appeal to the civilized communities of the world.
An unexpected application of seismometry has been to record the vibration of railway trains, bridges and steamships. An instrument of suitable construction will give records of the more or less violent jolting and vibratory movements of a train, and so localize irregularities due to changes in the character of ballast Applications of seismometry.and sleepers, to variation in gauge, &c. An instrument placed on a locomotive throws considerable light upon the effects due to the methods of balancing the wheels, and by alterations in this respect a saving of fuel of from 1 to 5 ℔ of coal per mile per locomotive has sometimes been effected.
By mapping the centres from which earthquakes originate off the coast of Japan, we have not only determined districts where geological activity is pronounced, but have placed before the cable engineer well-defined localities which it is advisable to avoid; and in the records of unfelt earthquakes which originate far from land similar information is being collected for the deeper parts of the oceans. Occasionally these records have almost immediately made clear the cause of a cable failure. From lack of such information in 1888, when the cables connecting Australia with the outer world were simultaneously broken, the sudden isolation was regarded as a possible operation of war, and the colonists called out their naval and military reserves. Records of earthquakes originating at great distances have also frequently enabled us to anticipate, to correct, to extend, or to disprove telegraphic accounts of the disasters. Whatever information a seismogram may give is certain, whilst the information gathered from telegrams may in the process of transit become exaggerated or minimized. Otherwise unaccountable disturbances in records from magnetographs, barographs and other instruments employed in observatories are frequently