Page:EB1911 - Volume 08.djvu/902

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
ECHINODERMA
875


aquarium towards the close of the metamorphosis may account for the slight information available concerning the stages that immediately follow the embryonic. Another difficulty is due to the fact that the types studied, and especially the crinoid Antedon, are highly specialized, so that some of the embryonic features are not really primitive as regards the class, but only as regards each particular genus. Thus inferences from embryonic development need to be checked by palaeontology, and supplemented by comparison of the anatomy of other living genera.

Minute anatomical research has also aided to establish the Pelmatozoic theory by the gradual recognition in other classes of features formerly supposed to be confined to Pelmatozoa. Thus the elements of the Pelmatozoan ventral groove are now detected in so different a structure as the echinoid ambulacrum, while an aboral nervous system, the diminished representative of that in crinoids, has been traced in all Eleutherozoa except Holothurians. The broader theories of modern zoology might seem to have little bearing on the Echinoderma, for it is not long since the study of these animals was compared to a landlocked sea undisturbed by such storms as rage around the origin of the Vertebrata. This, however, is no more the case. The conception of the Dipleurula derives its chief weight from the fact that it is comparable to the early larval forms of other primitive coelomate animals, such as Balanoglossus, Phoronis, Chaetognatha, Brachiopoda and Bryozoa. So too the explanation of radial symmetry and torsion of organs as due to a Pelmatozoic mode of life finds confirmation in many other phyla. Instead of discussing all these questions separately, with the details necessary for an adequate presentation of the argument, we shall now sketch the history of the Echinoderms in accordance with the Pelmatozoic theory. Such a sketch must pass lightly over debatable ground, and must consist largely of suggestions still in need of confirmation; but if it serves as a frame into which more precise and more detailed statements may be fitted as they come to the ken of the reader, its object will be attained.

Evolution of the Echinoderms.—It is reasonable to suppose that the Coelomata—animals in which the body-cavity is divided into a gut passing from mouth to anus and a hollow (coelom) surrounding it—were derived from the simpler Coelentera, in which the primitive body-cavity (archenteron) is not so divided, and has only one aperture serving as both mouth and anus. We may, with Sedgwick, suppose the coelom to have originated by the enlargement and separation of pouches that pressed outwards from the archenteron into the thickened body-wall (such structures as the genital pouches of some Coelentera, not yet shut off from the rest of the cavity), and they would probably have been four in number and radially disposed about the central cavity. The evolution of this cavity into a gut is foreshadowed in some Coelentera by the elliptical shape of the aperture, and by the development at its ends of a ciliated channel along which food is swept; we have only to suppose the approximation of the sides of the ellipse and their eventual fusion, to complete the transformation of the radially symmetrical Coelenterate into a bilaterally symmetrical Coelomate with mouth and anus at opposite ends of the long axis. We further suppose that of the four coelomic pouches one was in front of the mouth, one behind the anus, and one on each side. Such an animal, if it ever existed, probably lived near the surface of the sea, and even here it may have changed its medusoid mode of locomotion for one in the direction of its mouth. Thus the bilateral symmetry would have been accentuated, and the organism shaped more definitely into three segments, namely (1) a preoral segment or lobe, containing the anterior coelomic cavity; (2) a middle segment, containing the gut, and the two middle coelomic cavities; (3) a posterior segment, containing the posterior coelomic cavity, which, however, owing to the backward prolongation of the anus, became divided into two—a right and left posterior coelom. Each of these cavities presumably excreted waste products to the exterior by a pore. There was probably a nervous area, with a tuft of cilia, at the anterior end; while, at all events in forms that remained pelagic, the ciliated nervous tracts of the rest of the body may be supposed to have become arranged in bands around the body-segments. Such a form as this is roughly represented to-day by the Actinotrocha larva of Phoronis, the importance of which has been brought out by Masterman. But only slight modifications are required to produce the Tornaria larva of the Enteropneusta and other larvae, including the special type that is inferred from the Dipleurula larval stages of recent forms to have characterized the ancestor of the Echinoderms. We cannot enter here into all the details of comparison between these larval forms; amid much that is hypothetical a few homologies are widely accepted, and the preceding account will show the kind of relation that the Echinoderms bear to other animals, including what are now usually regarded as the ancestors of the Chordata (to which back-boned animals belong), as well as the nature of the evidence that their study has been, or may be, made to yield. How the hypothetical Dipleurula became an Echinoderm, and how the primitive Echinoderms diverged in structure so as to form the various classes, are questions to which an answer is attempted in the following paragraphs:—

Fig. 6.—Diagrammatic reconstruction of Dipleurula. The creature is represented crawling on the sea-floor, but it may equally well have been a floating animal. The ciliated bands are not drawn.

Confining our attention to that form of Dipleurula (fig. 6) which, it is supposed, gave rise to the Echinoderma, we infer from embryological data that its special features were as follow:—The anterior coelomic cavity was wholly or partially divided, and from each half a duct led to the exterior, opening at a pore near the middle line of the back. The middle cavities were smaller, and the ducts from them came to unite with those from the anterior cavities, and no longer opened directly to the exterior; whether these cavities were already specialized as water-sacs cannot be asserted, but they certainly had become so at a slightly later stage. The posterior cavities were the largest, but what had become of their original opening to the exterior is uncertain. The genital products were derived from the lining of the coelomic cavities, but it would not be safe to say that any particular region was as yet specialized for generation. The epithelium of the outer surface was probably ciliated, and a portion of it in the preoral lobe differentiated as a sense-organ, with longer cilia and underlying nerve-centre, from which two nerves ran back below the ventral surface. Into the space between the walls of the coelom and the outer body-wall, originally filled with jelly, definite cells now wandered, chiefly derived from the coelomic walls. Some of these cells produced muscles and connective tissue; others absorbed and removed waste products, iron salts, calcium carbonate and the like, and so were ready to be utilized for the deposition of pigment or of skeletal substance. In some of these respects the Dipleurula may have diverged from the ancestor of Enteropneusta and of other animals, but it could not as yet have been recognized as echinodermal by a zoologist, for it presented none of the structural peculiarities of the modern adult echinoderm.

Fig. 7.—Diagrammatic reconstruction of primitive Pelmatozoön, seen from the side. The plates of the test are not drawn; their probable appearance may be gathered from fig. 8.

Now ensued the great event that originated the phylum—the discovery of the sea-floor. This being apprehended by the sensory anterior end, it was by that end that the Dipleurula attached itself; not, however, by the pole, since that would have interfered at once with the sensory organ, but a little to one side, the right