Page:EB1911 - Volume 08.djvu/917

From Wikisource
Jump to navigation Jump to search
This page has been validated.
890
ECLIPSE
  

below, together with results deduced by Holden from the eclipses of January and December 1889:—

  August
1886.
January
1889.
December
1889.
Intrinsic actinic brilliancy of the brightest parts of the corona 0·031 0·079  0·029
  Do. of the polar rays · · 0·053  0·016
  Do. of the sky near the sun 0·0007 0·0050  0·0009
Ratio of intrinsic brilliancy of the brightest parts of the corona
 to that of the sky (actinic)
44 to 1 16 to 1  32 to 1
Magnitude of the faintest star shown on the eclipse negatives · · 2·3 · ·

The results in the first and third columns are derived from plates taken in a very humid climate, and are not very different.

The eclipse of August 19, 1887, was total in Japan and Russia, but cloudy weather prevented successful observations except in Siberia and eastern Russia.

The eclipse of January 1, 1889, was observed in California and Nevada by many American astronomers. The photographs of the corona, especially those by Charoppin and E. E. Barnard, show a wealth of detail. Those of Barnard, of the Lick Observatory party, were studied by Holden, and exhibited the fact that rays, like the “polar-rays,” extended all round the sun, instead of being confined to the polar regions only. The outer corona was registered out to 100′ from the moon’s limb on Charoppin’s negatives, to 130′ on those of Lowden and Ireland. On other plates the outline of the moon is visible projected on the corona before totality began. The spectrum of the corona showed few bright lines besides those of coronium and hydrogen.

The eclipse of December 22, 1889, was observed in Cayenne, S. America, by a party from the Lick Observatory under rather unfavourable conditions. Expeditions sent to Africa were baffled by cloudy weather. Father Stephen Joseph Perry observed at Salute Islands, French Guiana, and obtained some photographs of value. The effort cost him his life, for he died of malarial fever five days after the eclipse.

The eclipse of April 16, 1893, was observed by British and French parties in Africa and Brazil, and by Professor J. M. Schaeberle of the Lick Observatory in Chile. The Chile photographs of the corona were taken with a lens of 40 ft. focus, and are extremely fine. They show a faint comet near the sun. No great extensions to the corona were shown on any of the negatives, or seen visually, though they were specially looked for by British parties. The neighbourhood of the sun was carefully examined by G. Bigourdan without finding any planet. The spectrum of the corona was the usual one. The following lines were photographed in slitless spectroscopes, and undoubtedly belong to the corona: W. L. 3987; 4086; 4217; 4231; 4240; 4280; 4486; 5303 (the last number is the wave-length of the green coronium line). All of these have been seen in slit spectroscopes also. It is possible that two lines observed by Young in 1869, namely, W. L. (Ångstrom) 5450 and 5570, should be added to the list of undoubted coronal lines. It is not likely that helium or hydrogen or calcium vapour forms part of the corona. The wave-lengths of some 700 lines belonging to the chromosphere and prominences were determined by the British parties.

The eclipse of August 9, 1896, was total in Norway, Novaya Zemlya and Japan. The day was very unfavourable as to weather, but good photographs of the corona were obtained by Russian parties in Siberia and Lapland. Shackelton, in Novaya Zemlya, with a prismatic camera obtained a photograph of the reversing-layer at the beginning of totality. This photograph completely confirms Young’s discovery, and shows the prominent Fraunhofer lines bright, the bright lines of the chromosphere spectrum being especially conspicuous.

At the solar eclipse of January 22, 1898, the shadow of the moon traversed India from the western coast to the Himalaya. The duration of totality was about 2 m. The eclipse was very fully observed, more than 100 negatives of the corona being secured. The equatorial extension of the visible corona was short and faint, and the invisible (spectroscopic) corona was also very faint. The spectrum of the reversing-layer was successfully photographed; one set of negatives shows the polarization of one of the longest streamers of the corona, and proves the presence of dust particles reflecting solar light. The bright-line spectrum of hydrogen in the chromosphere was followed to the thirtieth point of the series, and the wave-lengths were shown to agree closely with Balmer’s formula (see Spectroscopy). The wave-length of coronium was found to be 5303 (not 5317 as previously supposed), and the brightness of the corona was measured. E. W. Maunder made the curious observation of coronal matter enveloping a prominence in the form of a hood.

Observations of the eclipse of May 28, 1900, were favoured in a remarkable degree by the absence of clouds. The photographs of the corona obtained by W. W. Campbell extended four diameters of the sun on the west side. The sun’s edge was photographed with an objective-prism spectrograph composed of two 60° prisms in front of a telescope of 2 in. aperture and 60 in. focus. A fine photograph, 6 in. long, of the bright- and dark-line spectra of the sun’s edge at the end of totality was thus obtained. It shows 600 bright lines sharply in focus besides the dark-line spectrum, to which the bright lines gave way as the sun reappeared. The coronal material radiating the green light was found to be markedly heaped up in the sun-spot regions. No dark lines were found in the spectrum of the inner corona. G. E. Hale and E. B. Frost also photographed the combined bright- and dark-line spectra of the solar cusps at the instants before and after totality. On one photograph showing no dark lines 70 bright lines could be measured between 4070 and 4340. On another were 70 bright lines between Hb and Hs. On a third were 266 bright lines between 4026 and 4381, and some dark lines. These lines show a marked dissimilarity from the solar spectrum.  (S. N.) 

The eclipse of May 18, 1901, was observable in Mauritius with 31/2 minutes of totality, and in Sumatra with 61/2 minutes. Unfortunately there was cloudy weather in Sumatra, which at some stations prevented observations entirely and at others neutralized the advantages promised by the long duration of totality. Thus spectroscopic observations for the detection of motion of the corona, for which the long totality gave a special opportunity, failed owing to cloud; and the search for intra-Mercurial planets had only a negative result, though stars down to magnitude 8·8 were photographed on the plates. But though no particular step in advance was taken, successful records of the eclipse were obtained, which will enable comparison to be made with other eclipses and will contribute their share to the discussion of the whole series. These include photographs of the corona, showing that it was of the sun-spot minimum type, and available for measures of its brightness; photographs of the spectra of the chromosphere and corona which are of the same general character as those obtained at previous eclipses; photographs showing the polarization of the corona, available for quantitative measures of polarization at different points. Photographs of the spectrum of the outer corona taken by the Lick Observatory party show a strong Fraunhofer dark-line spectrum, consistent with the view that the light is reflected sunlight. At Mauritius there was no cloud, but the definition was poor. Successful photographs of the corona were obtained for comparison with those taken in Sumatra one and a half hours later, but nothing of great interest was revealed by the comparison.

The eclipse of August 30, 1905, offered a duration of 31/2 minutes in Spain, the track running from Labrador through Spain to North Africa, and affording excellent opportunities for observers, who flocked to the central line in great numbers. Unfortunately it was cloudy in Labrador, so that the special advantages of the long line of possible stations were lost. Exceptionally good weather conditions were enjoyed in Algeria and Tunisia, and full advantage was taken of them by H. F. Newall, C. Trépied and others at Guelma, by the party from Greenwich and G. Bigourdan at Sfax. That G. Newall’s spectroscopic photographs for rotation of the corona again gave no result is a clear indication of the faintness of the corona at 3′ from the limb; but F. W. Dyson at Sfax obtained two new lines at 5536 and 5117 in the spectrum