this date was the invention of the voltameter and his enunciation of the laws of electrolysis. The voltameter provided a means of measuring quantity of electricity, and in the hands of Faraday and his successors became an appliance of fundamental importance. The 8th series is occupied with a discussion of the theory of the voltaic pile, in which Faraday accumulates evidence to prove that the source of the energy of the pile must be chemical. He returns also to this subject in the 16th series. In the 9th series (1834) he announced the discovery of the important property of electric conductors, since called their self-induction or inductance, a discovery in which, however, he was anticipated by Joseph Henry in the United States. The 11th series (1837) deals with electrostatic induction and the statement of the important fact of the specific inductive capacity of insulators or dielectrics. This discovery was made in November 1837 when Faraday had no knowledge of Cavendish’s previous researches into this matter. The 19th series (1845) contains an account of his brilliant discovery of the rotation of the plane of polarized light by transparent dielectrics placed in a magnetic field, a relation which established for the first time a practical connexion between the phenomena of electricity and light. The 20th series (1845) contains an account of his researches on the universal action of magnetism and diamagnetic bodies. The 22nd series (1848) is occupied with the discussion of magneto-crystallic force and the abnormal behaviour of various crystals in a magnetic field. In the 25th series (1850) he made known his discovery of the magnetic character of oxygen gas, and the important principle that the terms paramagnetic and diamagnetic are relative. In the 26th series (1850) he returned to a discussion of magnetic lines of force, and illuminated the whole subject of the magnetic circuit by his transcendent insight into the intricate phenomena concerned. In 1855 he brought these researches to a conclusion by a general article on magnetic philosophy, having placed the whole subject of magnetism and electromagnetism on an entirely novel and solid basis. In addition to this he provided the means for studying the phenomena not only qualitatively, but also quantitatively, by the profoundly ingenious instruments he invented for that purpose.
Electrical Measurement.—Faraday’s ideas thus pressed upon electricians the necessity for the quantitative measurement of electrical phenomena.[1] It has been already mentioned that Schweigger invented in 1820 the “multiplier,” and Nobili in 1825 the astatic galvanometer. C. S. M. Pouillet in 1837 contributed the sine and tangent compass, and W. E. Weber effected great improvements in them and in the construction and use of galvanometers. In 1849 H. von Helmholtz devised a tangent galvanometer with two coils. The measurement of electric resistance then engaged the attention of electricians. By his Memoirs in the Phil. Trans. in 1843, Sir Charles Wheatstone gave a great impulse to this study. He invented the rheostat and improved the resistance balance, invented by S. H. Christie (1784–1865) in 1833, and subsequently called the Wheatstone Bridge. (See his Scientific Papers, published by the Physical Society of London, p. 129.) Weber about this date invented the electrodynamometer, and applied the mirror and scale method of reading deflections, and in co-operation with C. F. Gauss introduced a system of absolute measurement of electric and magnetic phenomena. In 1846 Weber proceeded with improved apparatus to test Ampère’s laws of electrodynamics. In 1845 H. G. Grassmann (1809–1877) published (Pogg. Ann. vol. 64) his “Neue Theorie der Electrodynamik,” in which he gave an elementary law differing from that of Ampère but leading to the same results for closed circuits. In the same year F. E. Neumann published another law. In 1846 Weber announced his famous hypothesis concerning the connexion of electrostatic and electrodynamic phenomena. The work of Neumann and Weber had been stimulated by that of H. F. E. Lenz (1804–1865), whose researches (Pogg. Ann., 1834, 31; 1835, 34) among other results led him to the statement of the law by means of which the direction of the induced current can be predicted from the theory of Ampère, the rule being that the direction of the induced current is always such that its electrodynamic action tends to oppose the motion which produces it.
Neumann in 1845 did for electromagnetic induction what Ampère did for electrodynamics, basing his researches upon the experimental laws of Lenz. He discovered a function, which has been called the potential of one circuit on another, from which he deduced a theory of induction completely in accordance with experiment. Weber at the same time deduced the mathematical laws of induction from his elementary law of electrical action, and with his improved instruments arrived at accurate verifications of the law of induction, which by this time had been developed mathematically by Neumann and himself. In 1849 G. R. Kirchhoff determined experimentally in a certain case the absolute value of the current induced by one circuit in another, and in the same year Erik Edland (1819–1888) made a series of careful experiments on the induction of electric currents which further established received theories. These labours laid the foundation on which was subsequently erected a complete system for the absolute measurement of electric and magnetic quantities, referring them all to the fundamental units of mass, length and time. Helmholtz gave at the same time a mathematical theory of induced currents and a valuable series of experiments in support of them (Pogg. Ann., 1851). This great investigator and luminous expositor just before that time had published his celebrated essay, Die Erhaltung der Kraft (“The Conservation of Energy”), which brought to a focus ideas which had been accumulating in consequence of the work of J. P. Joule, J. R. von Mayer and others, on the transformation of various forms of physical energy, and in particular the mechanical equivalent of heat. Helmholtz brought to bear upon the subject not only the most profound mathematical attainments, but immense experimental skill, and his work in connexion with this subject is classical.
Lord Kelvin’s Work.—About 1842 Lord Kelvin (then William Thomson) began that long career of theoretical and practical discovery and invention in electrical science which revolutionized every department of pure and applied electricity. His early contributions to electrostatics and electrometry are to be found described in his Reprint of Papers on Electrostatics and Magnetism (1872), and his later work in his collected Mathematical and Physical Papers. By his studies in electrostatics, his elegant method of electrical images, his development of the theory of potential and application of the principle of conservation of energy, as well as by his inventions in connexion with electrometry, he laid the foundations of our modern knowledge of electrostatics. His work on the electrodynamic qualities of metals, thermo-electricity, and his contributions to galvanometry, were not less massive and profound. From 1842 onwards to the end of the 19th century, he was one of the great master workers in the field of electrical discovery and research.[2] In 1853 he published a paper “On Transient Electric Currents” (Phil. Mag., 1853 [4], 5, p. 393), in which he applied the principle of the conservation of energy to the discharge of a Leyden jar. He added definiteness to the idea of the self-induction or inductance of an electric circuit, and gave a mathematical expression for the current flowing out of a Leyden jar during its discharge. He confirmed an opinion already previously expressed by Helmholtz and by Henry, that in some circumstances this discharge is oscillatory in nature, consisting of an alternating electric current of high frequency. These theoretical predictions were confirmed and others, subsequently, by the work of B. W. Feddersen (b. 1832), C. A. Paalzow (b. 1823), and it was then seen that the familiar phenomena of the discharge of a Leyden
- ↑ Amongst the most important of Faraday’s quantitative researches must be included the ingenious and convincing proofs he provided that the production of any quantity of electricity of one sign is always accompanied by the production of an equal quantity of electricity of the opposite sign. See Experimental Researches on Electricity, vol. i. § 1177.
- ↑ In this connexion the work of George Green (1793–1841) must not be forgotten. Green’s Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, published in 1828, contains the first exposition of the theory of potential. An important theorem contained in it is known as Green’s theorem, and is of great value.