magnetic field remained an isolated fact in electro-optics. Then M. E. Verdet (1824–1860) made a study of the subject and discovered that a solution of ferric perchloride in methyl alcohol rotated the plane of polarization in an opposite direction to heavy glass (Ann. Chim. Phys., 1854, 41, p. 370; 1855, 43, p. 37; Com. Rend., 1854, 39, p. 548). Later A. A. E. E. Kundt prepared metallic films of iron, nickel and cobalt, and obtained powerful negative optical rotation with them (Wied. Ann., 1884, 23, p. 228; 1886, 27, p. 191). John Kerr (1824–1907) discovered that a similar effect was produced when plane polarized light was reflected from the pole of a powerful magnet (Phil. Mag., 1877, [5], 3, p. 321, and 1878, 5, p. 161). Lord Kelvin showed that Faraday’s discovery demonstrated that some form of rotation was taking place along lines of magnetic force when passing through a medium.[1] Many observers have given attention to the exact determination of Verdet’s constant of rotation for standard substances, e.g. Lord Rayleigh for carbon bisulphide,[2] and Sir W. H. Perkin for an immense range of inorganic and organic bodies.[3] Kerr also discovered that when certain homogeneous dielectrics were submitted to electric strain, they became birefringent (Phil. Mag., 1875, 50, pp. 337 and 446). The theory of electro-optics received great attention from Kelvin, Maxwell, Rayleigh, G. F. Fitzgerald, A. Righi and P. K. L. Drude, and experimental contributions from innumerable workers, such as F. T. Trouton, O. J. Lodge and J. L. Howard, and many others.
Electric Waves.—In the decade 1880–1890, the most important advance in electrical physics was, however, that which originated with the astonishing researches of Heinrich Rudolf Hertz (1857–1894). This illustrious investigator was stimulated, by a certain problem brought to his notice by H. von Helmholtz, to undertake investigations which had for their object a demonstration of the truth of Maxwell’s principle that a variation in electric displacement was in fact an electric current and had magnetic effects. It is impossible to describe here the details of these elaborate experiments; the reader must be referred to Hertz’s own papers, or the English translation of them by Prof. D. E. Jones. Hertz’s great discovery was an experimental realization of a suggestion made by G. F. Fitzgerald (1851–1901) in 1883 as to a method of producing electric waves in space. He invented for this purpose a radiator consisting of two metal rods placed in one line, their inner ends being provided with poles nearly touching and their outer ends with metal plates. Such an arrangement constitutes in effect a condenser, and when the two plates respectively are connected to the secondary terminals of an induction coil in operation, the plates are rapidly and alternately charged, and discharged across the spark gap with electrical oscillations (see Electrokinetics). Hertz then devised a wave detecting apparatus called a resonator. This in its simplest form consisted of a ring of wire nearly closed terminating in spark balls very close together, adjustable as to distance by a micrometer screw. He found that when the resonator was placed in certain positions with regard to the oscillator, small sparks were seen between the micrometer balls, and when the oscillator was placed at one end of a room having a sheet of zinc fixed against the wall at the other end, symmetrical positions could be found in the room at which, when the resonator was there placed, either no sparks or else very bright sparks occurred at the poles. These effects, as Hertz showed, indicated the establishment of stationary electric waves in space and the propagation of electric and magnetic force through space with a finite velocity. The other additional phenomena he observed finally contributed an all but conclusive proof of the truth of Maxwell’s views. By profoundly ingenious methods Hertz showed that these invisible electric waves could be reflected and refracted like waves of light by mirrors and prisms, and that familiar experiments in optics could be repeated with electric waves which could not affect the eye. Hence there arose a new science of electro-optics, and in all parts of Europe and the United States innumerable investigators took possession of the novel field of research with the greatest delight. O. J. Lodge,[4] A. Righi,[5] J. H. Poincaré,[6] V. F. K. Bjerknes, P. K. L. Drude, J. J. Thomson,[7] John Trowbridge, Max Abraham, and many others, contributed to its elucidation.
In 1892, E. Branly of Paris devised an appliance for detecting these waves which subsequently proved to be of immense importance. He discovered that they had the power of affecting the electric conductivity of materials when in a state of powder, the majority of metallic filings increasing in conductivity. Lodge devised a similar arrangement called a coherer, and E. Rutherford invented a magnetic detector depending on the power of electric oscillations to demagnetize iron or steel. The sum total of all these contributions to electrical knowledge had the effect of establishing Maxwell’s principles on a firm basis, but they also led to technical inventions of the very greatest utility. In 1896 G. Marconi applied a modified and improved form of Branly’s wave detector in conjunction with a novel form of radiator for the telegraphic transmission of intelligence through space without wires, and he and others developed this new form of telegraphy with the greatest rapidity and success into a startling and most useful means of communicating through space electrically without connecting wires.
Electrolysis.—The study of the transfer of electricity through liquids had meanwhile received much attention. The general facts and laws of electrolysis (q.v.) were determined experimentally by Davy and Faraday and confirmed by the researches of J. F. Daniell, R. W. Bunsen and Helmholtz. The modern theory of electrolysis grew up under the hands of R. J. E. Clausius, A. W. Williamson and F. W. G. Kohlrausch, and received a great impetus from the work of Svante Arrhenius, J. H. Van’t Hoff, W. Ostwald, H. W. Nernst and many others. The theory of the ionization of salts in solution has raised much discussion amongst chemists, but the general fact is certain that electricity only moves through liquids in association with matter, and simultaneously involves chemical dissociation of molecular groups.
Discharge through Gases.—Many eminent physicists had an instinctive feeling that the study of the passage of electricity through gases would shed much light on the intrinsic nature of electricity. Faraday devoted to a careful examination of the phenomena the XIIIth series of his Experimental Researches, and among the older workers in this field must be particularly mentioned J. Plücker, J. W. Hittorf, A. A. de la Rive, J. P. Gassiot, C. F. Varley, and W. Spottiswoode and J. Fletcher Moulton. It has long been known that air and other gases at the pressure of the atmosphere were very perfect insulators, but that when they were rarefied and contained in glass tubes with platinum electrodes sealed through the glass, electricity could be passed through them under sufficient electromotive force and produced a luminous appearance known as the electric glow discharge. The so-called vacuum tubes constructed by H. Geissler (1815–1879) containing air, carbonic acid, hydrogen, &c., under a pressure of one or two millimetres, exhibit beautiful appearances when traversed by the high tension current produced by the secondary circuit of an induction coil. Faraday discovered the existence of a dark space round the negative electrode which is usually known as the “Faraday dark space.” De la Rive added much to our knowledge of the subject, and J. Plücker and his disciple J. W. Hittorf examined the phenomena exhibited in so-called high vacua, that is, in exceedingly rarefied gases. C. F. Varley discovered the interesting fact that no current could be sent through the rarefied gas unless a certain minimum potential difference of the electrodes was excited. Sir William Crookes took up in 1872 the study of electric discharge through
- ↑ See Sir W. Thomson, Proc. Roy. Soc. Lond., 1856, 8, p. 152; or Maxwell, Elect. and Mag., vol. ii. p. 831.
- ↑ See Lord Rayleigh, Proc. Roy. Soc. Lond., 1884, 37, p. 146; Gordon, Phil. Trans., 1877, 167, p. 1; H. Becquerel, Ann. Chim. Phys., 1882, [3], 27, p. 312.
- ↑ Perkin’s Papers are to be found in the Journ. Chem. Soc. Lond., 1884, p. 421; 1886, p. 177; 1888, p. 561; 1889, p. 680; 1891, p. 981; 1892, p. 800; 1893, p. 75.
- ↑ The Work of Hertz (London, 1894).
- ↑ L’Ottica delle oscillazioni elettriche (Bologna, 1897).
- ↑ Les Oscillations électriques (Paris, 1894).
- ↑ Recent Researches in Electricity and Magnetism (Oxford, 1892).