The arrangement and nature of the external conductors depends on the system of electric supply in which they are used. In the case of continuous-current supply for incandescent electric lighting and motive power in small units, when the external conductors are laid down on the three-wire system, each main or branch cable in the street consists of a set of three conductors called the positive, middle and negative.
Fig. 6.—Armoured Concentric Cable (Section). |
Fig. 7.—Triple Conductor Armoured Cable (Section). | ||
IC, | Inner conductor. | C, | Copper conductor. |
OC, | Outer conductor. | I, | Insulation. |
I, | Insulation. | L, | Lead sheath. |
L, | Lead sheath. | H, | Hemp covering. |
S, | Steel armour | S, | Steel armour. |
H, | Hemp covering. |
Of these triple conductors some run from the supply station to various points in the area of supply without being tapped, and are called the feeders; others, called the distributing mains, are used for making connexions with the service lines of the consumers, one service line, as already explained, being connected to the middle conductor, and the other to either the positive or the negative one. Since the middle conductor serves to convey only the difference between the currents being used on the two sides of the system, it is smaller in section than the positive and negative ones. In laying out the system great judgment has to be exercised as to the selection of the points of attachment of the feeders to the distributing mains, the object being to keep a constant electric pressure or voltage between the two service-lines in all the houses independently of the varying demand for current. Legally the suppliers are under regulations to keep the supply voltage constant within 4% either way above or below the standard pressure. As a matter of fact very few stations do maintain such good regulation. Hence a considerable variation in the light given by the incandescent lamps is observed, since the candle-power of carbon glow lamps varies as the fifth or sixth power of the voltage of supply, i.e. a variation of only 2% in the supply pressure affects the resulting candle-power of the lamps to the extent of 10 or 12%. This variation is, however, less in the case of metallic filament lamps (see Lighting: Electric). In the service-lines are inserted the meters for measuring the electric energy supplied to the customer (see Meter, Electric).
In the interior of houses and buildings the conductors generally consist of india-rubber-covered cables laid in wood casing. The copper wire must be tinned and then covered, first with a layer of unvulcanized pure india-rubber, then with a layer of vulcanized rubber, and lastly Interior wiring. with one or more layers of protective cotton twist or tape. No conductor of this character employed for interior house-wiring should have a smaller insulation resistance than 300 megohms per mile when tested with a pressure of 600 volts after soaking 24 hours in water. The wood casing should, if placed in damp positions or under plaster, be well varnished with waterproof varnish. As far as possible all joints in the run of the cable should be avoided by the use of the so-called looping-in system, and after the wiring is complete, careful tests for insulation should be made. The Institution of Electrical Engineers of Great Britain have drawn up rules to be followed in interior house-wiring, and the principal Fire Insurance offices, following the lead of the Phoenix Fire Office, of London, have made regulations which, if followed, are a safeguard against bad workmanship and resulting possibility of damage by fire. Where fires having an electric origin have taken place, they have invariably been traced to some breach of these rules. Opinions differ, however, as to the value and security of this method of laying interior conductors in buildings, and two or three alternative systems have been much employed. In one of these, called the interior conduit system, highly insulating waterproof and practically fireproof tubes or conduits replace the wooden casing; these, being either of plain insulating material, or covered with brass or steel armour, may be placed under plaster or against walls. They are connected by bends or joint-boxes. The insulated wires being drawn into them, any short circuit or heating of the wire cannot give rise to a fire, as it can only take place in the interior of a non-inflammable tube. A third system of electric light wiring is the safety concentric system, in which concentric conductors are used. The inner one, which is well insulated, consists of a copper-stranded cable. The outer may be a galvanized iron strand, a copper tape or braid, or a brass tube, and is therefore necessarily connected with the earth. A fourth system consists in the employment of twin insulated wires twisted together and sheathed with a lead tube; the conductor thus formed can be fastened by staples against walls, or laid under plaster or floors.
The general arrangement for distributing current to the different portions of a building for the purpose of electric lighting is to run up one or more rising mains, from which branches are taken off to distributing boxes on each floor, and from these boxes to carry various branch circuits to the lamps. At the distributing boxes are collected the cut-outs and switches controlling the various circuits. When alternating currents are employed, it is usual to select as a type of conductor either twin-twisted conductor or concentric; and the employment of these types of cable, rather than two separate cables, is essential in any case where there are telephone or telegraph wires in proximity, for otherwise the alternating current would create inductive disturbances in the telephone circuit. The house-wiring also comprises the details of switches for controlling the lamps, cut-outs or fuses for preventing an excess of current passing, and fixtures or supports for lamps often of an ornamental character. For the details of these, special treatises on electric interior wiring must be consulted.
For further information the reader may be referred to the following books:—C. H. Wordingham, Central Electrical Stations (London, 1901); A. Gay and C. Y. Yeaman, Central Station Electricity Supply (London, 1906); S. P. Thompson, Dynamo Electric Machinery (2 vols., London, 1905); E. Tremlett Carter and T. Davies, Motive Power and Gearing (London, 1906); W. C. Clinton, Electric Wiring (2nd ed., London, 1906); W. Perren Maycock, Electric Wiring, Fitting, Switches and Lamps (London, 1899); D. Salomons, Electric Light Installations (London, 1894); Stuart A. Russell, Electric Light Cables (London, 1901); F. A. C. Perrine, Conductors for Electrical Distribution (London, 1903); E. Rosenberg, W. W. Haldane Gee and C. Kinzbrunner, Electrical Engineering (London, 1903); E. C. Metcalfe, Practical Electric Wiring for Lighting Installations (London, 1905); F. C. Raphael, The Wireman’s Pocket Book (London, 1903). (J. A. F.)
II. Commercial Aspects.—To enable the public supply enterprises referred to in the foregoing section to be carried out in England, statutory powers became necessary to break up the streets. In the early days a few small stations were established for the supply of electricity within “block” History. buildings, or by means of overhead wires within restricted areas, but the limitations proved uneconomical and the installations were for the most part merged into larger undertakings sanctioned by parliamentary powers. In the year 1879 the British government had its attention directed for the first time to electric lighting as a possible subject for legislation, and the consideration of the then existing state of electric lighting was referred to a select committee of the House of Commons. No legislative action, however, was taken at that time. In fact the invention of the incandescent lamp was incomplete—Edison’s British master-patent was only filed in Great Britain in November 1879. In 1881 and 1882 electrical exhibitions were held in Paris and at the Crystal Palace, London, where the improved electric