Page:EB1911 - Volume 09.djvu/250

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ELECTROMETALLURGY
233


in the cavity of the lime blocks. When prolonged heating is required at very high temperatures it is found necessary to line the furnace-cavity with alternate layers of magnesia and carbon, taking care that the lamina next to the lime is of magnesia; if this were not done the lime in contact with the carbon crucible would form calcium carbide and would slag down, but magnesia does not yield a carbide in this way. Chaplet has patented a muffle or tube furnace, similar in principle, for use on a larger scale, with a number of electrodes placed above and below the muffle-tube. The arc furnaces now widely used in the manufacture of calcium carbide on a large scale are chiefly developments of the Siemens furnace. But whereas, from its construction, the Siemens furnace was intermittent in operation, necessitating stoppage of the current while the contents of the crucible were poured out, many of the newer forms are specially designed either to minimize the time required in effecting the withdrawal of one charge and the introduction of the next, or to ensure absolute continuity of action, raw material being constantly charged in at the top and the finished substance and by-products (slag, &c.) withdrawn either continuously or at intervals, as sufficient quantity shall have accumulated. In the King furnace, for example, the crucible, or lowest part of the furnace, is made detachable, so that when full it may be removed and an empty crucible substituted. In the United States a revolving furnace is used which is quite continuous in action.

The class of furnaces heated by electrically incandescent materials has been divided by Borchers into two groups: (1) those in which the substance is heated by contact with a substance offering a high resistance to the current passing through it, and (2) those in which the Incan-descence furnaces. substance to be heated itself affords the resistance to the passage of the current whereby electric energy is converted into heat. Practically the first of these furnaces was that of Despretz, in which the mixture to be heated was placed in a carbon tube rendered incandescent by the passage of a current through its substance from end to end. In 1880 W. Borchers introduced his resistance-furnace, which, in one sense, is the converse of the Despretz apparatus. A thin carbon pencil, forming a bridge between two stout carbon rods, is set in the midst of the mixture to be heated. On passing a current through the carbon the small rod is heated to incandescence, and imparts heat to the surrounding mass. On a larger scale several pencils are used to make the connexions between carbon blocks which form the end walls of the furnace, while the side walls are of fire-brick laid upon one another without mortar. Many of the furnaces now in constant use depend mainly on this principle, a core of granular carbon fragments stamped together in the direct line between the electrodes, as in Acheson’s carborundum furnace, being substituted for the carbon pencils. In other cases carbon fragments are mixed throughout the charge, as in E. H. and A. H. Cowles’s zinc-smelting retort. In practice, in these furnaces, it is possible for small local arcs to be temporarily set up by the shifting of the charge, and these would contribute to the heating of the mass. In the remaining class of furnace, in which the electrical resistance of the charge itself is utilized, are the continuous-current furnaces, such as are used for the smelting of aluminium, and those alternating-current furnaces, (e.g. for the production of calcium carbide) in which a portion of the charge is first actually fused, and then maintained in the molten condition by the current passing through it, while the reaction between further portions of the charge is proceeding.

For ordinary metallurgical work the electric furnace, requiring as it does (excepting where waterfalls or other cheap sources of power are available) the intervention of the boiler and steam-engine, or of the gas or oil engine, with a consequent loss of energy, has not usually proved so Uses and advantages. economical as an ordinary direct fired furnace. But in some cases in which the current is used for electrolysis and for the production of extremely high temperatures, for which the calorific intensity of ordinary fuel is insufficient, the electric furnace is employed with advantage. The temperature of the electric furnace, whether of the arc or incandescence type, is practically limited to that at which the least easily vaporized material available for electrodes is converted into vapour. This material is carbon, and as its vaporizing point is (estimated at) over 3500° C., and less than 4000° C., the temperature of the electric furnace cannot rise much above 3500° C. (6330° F.); but H. Moissan showed that at this temperature the most stable of mineral combinations are dissociated, and the most refractory elements are converted into vapour, only certain borides, silicides and metallic carbides having been found to resist the action of the heat. It is not necessary that all electric furnaces shall be run at these high temperatures; obviously, those of the incandescence or resistance type may be worked at any convenient temperature below the maximum. The electric furnace has several advantages as compared with some of the ordinary types of furnace, arising from the fact that the heat is generated from within the mass of material operated upon, and (unlike the blast-furnace, which presents the same advantage) without a large volume of gaseous products of combustion and atmospheric nitrogen being passed through it. In ordinary reverberatory and other heating furnaces the burning fuel is without the mass, so that the vessel containing the charge, and other parts of the plant, are raised to a higher temperature than would otherwise be necessary, in order to compensate for losses by radiation, convection and conduction. This advantage is especially observed in some cases in which the charge of the furnace is liable to attack the containing vessel at high temperatures, as it is often possible to maintain the outer walls of the electric furnace relatively cool, and even to keep them lined with a protecting crust of unfused charge. Again, the construction of electric furnaces may often be exceedingly crude and simple; in the carborundum furnace, for example, the outer walls are of loosely piled bricks, and in one type of furnace the charge is simply heaped on the ground around the carbon resistance used for heating, without containing-walls of any kind. There is, however, one (not insuperable) drawback in the use of the electric furnace for the smelting of pure metals. Ordinarily carbon is used as the electrode material, but when carbon comes in contact at high temperatures with any metal that is capable of forming a carbide a certain amount of combination between them is inevitable, and the carbon thus introduced impairs the mechanical properties of the ultimate metallic product. Aluminium, iron, platinum and many other metals may thus take up so much carbon as to become brittle and unforgeable. It is for this reason that Siemens, Borchers and others substituted a hollow water-cooled metal block for the carbon cathode upon which the melted metal rests while in the furnace. Liquid metal coming in contact with such a surface forms a crust of solidified metal over it, and this crust thickens up to a certain point, namely, until the heat from within the furnace just overbalances that lost by conduction through the solidified crust and the cathode material to the flowing water. In such an arrangement, after the first instant, the melted metal in the furnace does not come in contact with the cathode material.

Electrothermal Processes.—In these processes the electric current is used solely to generate heat, either to induce chemical reactions between admixed substances, or to produce a physical (allotropic) modification of a given substance. Borchers predicted that, at the high temperatures available with the electric furnace, every oxide would prove to be reducible by the action of carbon, and this prediction has in most instances been justified. Alumina and lime, for example, which cannot be reduced at ordinary furnace temperatures, readily give up their oxygen to carbon in the electric furnace, and then combine with an excess of carbon to form metallic carbides. In 1885 the brothers Cowles patented a process for the electrothermal reduction of oxidized ores by exposure to an intense current of electricity when admixed with carbon in a retort. Later in that year they patented a process for the reduction of aluminium by carbon, and in 1886 an electric furnace with sliding carbon rods passed through the end walls to the centre of a rectangular furnace. The impossibility of working with just sufficient carbon to reduce the alumina, without using any excess which would be free to