attraction between the disks at given distance apart varies as
the square of their difference of potential.
The most important improvements in connexion with electrometers are due, however, to Lord Kelvin, who introduced the guard plate and used gravity or the torsion of a wire as a means for evaluating the electrical forces.
Fig. 2.—Kelvin’s Portable Electrometer. |
Fig. 3. |
His portable electrometer is shown in fig. 2. H H (see fig. 3) is a plane disk of metal called the guard plate, fixed to the inner coating of a small Leyden jar (see fig. 2). At F a square hole is cut out of H H, and into this fits loosely without touching, like a trap door, a square piece of aluminium foil having a projecting tail, which carries at its end a stirrup L, crossed by a fine hair (see fig. 3). The square piece of aluminium is pivoted round a horizontal stretched wire. If then another horizontal disk G is placed over the disk H H and a difference of potential made between G and H H, the movable aluminium trap door F will be attracted by the fixed plate G. Matters are so arranged by giving a torsion to the wire carrying the aluminium disk F that for a certain potential difference between the plates H and G, the movable part F comes into a definite sighted position, which is observed by means of a small lens. The plate G (see fig. 2) is moved up and down, parallel to itself, by means of a screw. In using the instrument the conductor, whose potential is to be tested, is connected to the plate G. Let this potential be denoted by V, and let v be the potential of the guard plate and the aluminium flap. This last potential is maintained constant by guard plate and flap being part of the interior coating of a charged Leyden jar. Since the distribution of electricity may be considered to be constant over the surface S of the attracted disk, the mechanical force f on it is given by the expression,[1]
f = | S (V − v)2 | , |
8πd 2 |
Fig. 4.—Kelvin’s Absolute Electrometer. |
where d is the distance between the two plates. If this distance is varied until the attracted disk comes into a definite sighted position as seen by observing the end of the index through the lens, then since the force f is constant, being due to the torque applied by the wire for a definite angle of twist, it follows that the difference of potential of the two plates varies as their distance. If then two experiments are made, first with the upper plate connected to earth, and secondly, connected to the object being tested, we get an expression for the potential V of this conductor in the form
where d and d ′ are the distances of the fixed and movable plates from one another in the two cases, and A is some constant. We thus find V in terms of the constant and the difference of the two screw readings.
Lord Kelvin’s absolute electrometer (fig. 4) involves the same principle. There is a certain fixed guard disk B having a hole in it which is loosely occupied by an aluminium trap door plate, shielded by D and suspended on springs, so that its surface is parallel with that of the guard plate. Parallel to this is a second movable plate A, the distances between the two being measurable by means of a screw. The movable plate can be drawn down into a definite sighted position when a difference of potential is made between the two plates. This sighted position is such that the surface of the trap door plate is level with that of the guard plate, and is determined by observations made with the lenses H and L. The movable plate can be thus depressed by placing on it a certain standard weight W grammes.
Suppose it is required to measure the difference of potentials V and V′ of two conductors. First one and then the other conductor is connected with the electrode of the lower or movable plate, which is moved by the screw until the index attached to the attracted disk shows it to be in the sighted position. Let the screw readings in the two cases be d and d ′. If W is the weight required to depress the attracted disk into the same sighted position when the plates are unelectrified and g is the acceleration of gravity, then the difference of potentials of the conductors tested is expressed by the formula
V − V′ = (d − d ′) √ | 8πgW | , |
S |
where S denotes the area of the attracted disk.
The difference of potentials is thus determined in terms of a weight, an area and a distance, in absolute C.G.S. measure or electrostatic units.
Fig. 5. |
Symmetrical Electrometers include the dry pile electrometer and Kelvin’s quadrant electrometer. The principle underlying these instruments is that we can measure differences of potential by means of the motion of an electrified body in a symmetrical field of electric force. In the dry pile electrometer a single gold-leaf is hung up between two plates which are connected to the opposite terminals of a dry pile so that a certain constant difference of potential exists between these plates. The original inventor of this instrument was T. G. B. Behrens (Gilb. Ann., 1806, 23), but it generally bears the name of J. G. F. von Bohnenberger, who slightly modified its form. G. T. Fechner introduced the important improvement of using only one pile, which he removed from the immediate neighbourhood of the suspended leaf. W. G. Hankel still further improved the dry pile electrometer by giving a slow motion movement to the two plates, and substituted a galvanic battery with a large number of cells for the dry pile, and also employed a divided scale to measure the movements of the gold-leaf (Pogg. Ann., 1858, 103). If the gold-leaf is unelectrified, it is not acted upon by the two plates placed at equal distances on either side of it, but if its potential is raised or lowered it is attracted by one disk and repelled by the other, and the displacement becomes a measure of its potential.
Fig. 6.—Kelvin’s Quadrant Electrometer. |
A vast improvement in this instrument was made by the invention of the quadrant electrometer by Lord Kelvin, which is the most sensitive form of electrometer yet devised. In this instrument (see fig. 5) a flat paddle-shaped needle of aluminium foil U is supported by a bifilar suspension consisting of two cocoon fibres. This needle is suspended in the interior of a glass vessel partly coated with tin-foil on the outside and inside, forming therefore a Leyden jar (see fig. 6). In the bottom of the vessel is placed some sulphuric acid, and a platinum wire attached to the suspended needle dips into this acid. By giving a charge to this Leyden jar the needle can thus be maintained at a certain constant high potential. The needle is enclosed by a sort of flat box divided into four insulated quadrants A, B, C, D (fig. 5), whence the name. The opposite quadrants are connected together
by thin platinum wires. These quadrants are insulated
- ↑ See Maxwell, Treatise on Electricity and Magnetism (2nd ed.), i. 308.