Page:EB1911 - Volume 09.djvu/271

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
254
ELEMENT


quite unjust to consider the work of the alchemists, who tried to make artificial gold, as consummate nonsense. A priori there was no reason why a change from lead to gold should be less possible than a change from iron to rust; indeed there is no a priori reason against it now. But experience has taught us that lead and gold are chemical elements in the modern sense, and that there is a general experimental law that elements are not transformable one into another. So experience taught the alchemists irresistibly that in spite of the manifoldness of chemical changes it is not always possible to change any given substance into another; the possibilities are much more limited, and there is only a certain range of substances to be obtained from a given one. The impossibility of transforming lead or copper into noble metals proved to be only one case out of many, and it was recognized generally that there are certain chemical families whose members are related to one another by their mutual transformability, while it is impossible to bridge the boundaries separating these families.

The man who brought all these experiences and considerations into scientific form was Robert Boyle. He stated as a general principle, that only tangible and ponderable substances should be recognized as elements, an element being a substance from which other substances may be made, Work of Robert Boyle. but which cannot be separated into different substances. He showed that neither the peripatetic nor the alchemistic elements satisfied this definition. But he was more of a critical than of a synthetical turn of mind; although he established the correct principles, he hesitated to point out what substances, among those known at his time, were to be considered as elements. He only paved the way to the goal by laying the foundations of analytical chemistry, i.e. by teaching how to characterize and to distinguish different chemical individuals. Further, by adopting and developing the corpuscular hypothesis of the constitution of the ponderable substances, he foreshadowed, in a way, the law of the conservation of the elements, viz. that no element can be changed into another element; and he considered the compound substances to be made up from small particles or corpuscles of their elements, the latter retaining their essence in all combinations. This hypothesis accounts for the fact that only a limited number of other substances can be made from a given one—namely, only those which contain the elements present in the given substance. But it is characteristic of Boyle’s critical mind that he did not shut his eyes against a serious objection to his hypothesis. If the compound substance is made up of parts of the elements, one would expect that the properties of the compound substance would prove to be the sum of the properties of the elements. But this is not the case, and chemical compounds show properties which generally differ very considerably from those of the compounds. On the one hand, the corpuscular hypothesis of Boyle was developed into the atomic hypothesis of Dalton, which was considered at the beginning of the 19th century as the very best representation of chemical facts, while, on the other hand, the difficulty as to the properties of the compounds remained the same as Boyle found it, and has not yet been removed by an appropriate development of the atomic hypothesis. Thus Boyle considered, e.g. the metals as elements. However, it is interesting to note that he considered the mutual transformation of the metals as not altogether impossible, and he even tells of a case when gold was transformed into base metal. It is a common psychological fact that a reformer does not generally succeed in being wholly consistent in his reforming ideas; there remains invariably some point where he commits exactly the same fault which he set out to abolish. We shall find the same inconsistency also among other chemical reformers. Even earlier than Boyle, Joachim Jung (1587–1657) of Hamburg developed similar ideas. But as he did not distinguish himself, as Boyle did, by experimental work in science, his views exerted only a limited influence amongst his pupils.

In the times following Boyle’s work we find no remarkable outside development of the theory of elements, but a very important inside one. Analytical chemistry, or the art of distinguishing different chemical substances, was rapidly developing, and the necessary foundation for such a theory was thus Phlogiston theory. laid. We find the discussions about the true elements disappearing from the text-books, or removed to an insignificant corner, while the description of observed chemical changes of different ways of preparing the same substance, as identified by the same properties, and of the methods for recognizing and distinguishing the various substances, take their place. The similarity of certain groups of chemical changes, as, for example, combustion, and the inverse process, reduction, was observed, and thus led to an attempt to shape these most general facts into a common theory. In this way the theory of “phlogiston” was developed by G. E. Stahl, phlogiston being (according to the usual way of regarding general properties as being due to a principle or element) the “principle of combustibility,” similar to the “sulphur” of the alchemists. This again must be regarded as quite a legitimate step justified by the knowledge of the time. For experience taught that combustibility could be transferred by chemical action, e.g. from charcoal to litharge, the latter being changed thereby into combustible metallic lead; and according to Boyle’s principle, that only bodies should be recognized as chemical elements, phlogiston was considered as a body. From the fact that all leading chemists in the second half of the 18th century used the phlogiston theory and were not hindered by it in making their great discoveries, it is evident that a sufficient amount of truth and usefulness was embodied in this theory. It states indeed quite correctly the mutual relations between oxidation and reduction, as we now call these very general processes, and was erroneous only in regard to one question, which at that time had not aroused much interest, the question of the change of weight during chemical processes.

It was only after Isaac Newton’s discovery of universal gravitation that weight was considered as a property of paramount interest and importance, and that the question of the changes of weight in chemical reactions became one worth asking. When in due time this question was Lavoisier’s reform. raised, the fact became evident at once, that combustion means not loss but gain of weight. To be sure of this, it was necessary to know first the chemical and physical properties of gases, and it was just at the same time that this knowledge was developed by Priestley, Scheele and others. Lavoisier was the originator and expounder of the necessary reform. Oxygen was just discovered at that time, and Lavoisier gathered evidence from all sides that the theory of phlogiston had to be turned inside out to fit the new facts.

He realized that the sum total of the weights of all substances concerned within a chemical change is not altered by the change. This principle of the “conservation of weight” led at once to a simple and unmistakable definition of a chemical element. As the weight of a compound substance is the sum of the weights of its elements, the compound necessarily weighs more than any of its elements. An element is therefore a substance which, by being changed into another substance, invariably increases its weight, and never gives rise to substances of less weight. By the help of this criterion Lavoisier composed the first table of chemical elements similar to our modern ones. According to the knowledge of his time he regarded the alkalis as elements, although he remarked that they are rather similar to certain oxides, and therefore may possibly contain oxygen; the truth of this was proved at a later date by Humphry Davy. But the inconsistency of the reformer, already referred to, may be observed with Lavoisier. He included “heat and light” in his list of elements, although he knew that neither of them had weight, and that neither fitted his definition of an element; this atavistic survival was subsequently removed from the table of the elements by Berzelius in the beginning of the 19th century. In this way the question of what substances are to be regarded as chemical elements had been settled satisfactorily in a qualitative way, but it is interesting to realize that the last step in this development, the theory of Lavoisier, was based on quantitative considerations. Such considerations became of paramount