Page:EB1911 - Volume 09.djvu/425

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
400
ENERGY


everything surrounding them was at a temperature below the freezing point. He did not, however, infer that since the heat could not have been supplied by the ice, for ice absorbs heat in melting, this experiment afforded conclusive proof against the substantial nature of heat.

Though we may allow that the results obtained by Rumford and Davy demonstrate satisfactorily that heat is in some way due to motion, yet they do not tell us to what particular dynamical quantity heat corresponds. For example, does the heat generated by friction vary as the friction and the time during which it acts, or is it proportional to the friction and the distance through which the rubbing bodies are displaced—that is, to the work done against friction—or does it involve any other conditions? If it can be shown that, however the duration and all other conditions of the experiment may be varied, the same amount of heat can in the end be always produced when the same amount of energy is expended, then, and only then, can we infer that heat is a form of energy, and that the energy consumed has been really transformed into heat. This was left for J. P. Joule to achieve; his experiments conclusively prove that heat and energy are of the same nature, and that all other forms of energy can be transformed into an equivalent amount of heat.

The quantity of energy which, if entirely converted into heat, is capable of raising the temperature of the unit mass of water from 0° C. to 1° C. is called the mechanical equivalent of heat. One of the first who took in hand the determination of the mechanical equivalent of heat was Marc. Séguin, a nephew of J. M. Montgolfier. He argued that, if heat be energy, then, when it is employed in doing work, as in a steam-engine, some of the heat must itself be consumed in the operation. Hence he inferred that the amount of heat given up to the condenser of an engine when the engine is doing work must be less than when the same amount of steam is blown through the engine without doing any work. Séguin was unable to verify this experimentally, but in 1857 G. A. Hirn succeeded, not only in showing that such a difference exists, but in measuring it, and hence determining a tolerably approximate value of the mechanical equivalent of heat. In 1839 Séguin endeavoured to determine the mechanical equivalent of heat from the loss of heat suffered by steam in expanding, assuming that the whole of the heat so lost was consumed in doing external work against the pressure to which the steam was exposed. This assumption, however, cannot be justified, because it neglected to take account of work which might possibly have to be done within the steam itself during the expansion.

In 1842 R. Mayer, a physician at Heilbronn, published an attempt to determine the mechanical equivalent of heat from the heat produced when air is compressed. Mayer made an assumption the converse of that of Séguin, asserting that the whole of the work done in compressing the air was converted into heat, and neglecting the possibility of heat being consumed in doing work within the air itself or being produced by the transformation of internal potential energy. Joule afterwards proved (see below) that Mayer’s assumption was in accordance with fact, so that his method was a sound one as far as experiment was concerned; and it was only on account of the values of the specific heats of air at constant pressure and at constant volume employed by him being very inexact that the value of the mechanical equivalent of heat obtained by Mayer was very far from the truth.

Passing over L. A. Colding, who in 1843 presented to the Royal Society of Copenhagen a paper entitled “Theses concerning Force,” which clearly stated the “principle of the perpetuity of energy,” and who also performed a series of experiments for the purpose of determining the heat developed by the compression of various bodies, which entitle him to be mentioned among the founders of the modern theory of energy, we come to Dr James Prescott Joule of Manchester, to whom we are indebted more than to any other for the establishment of the principle of the conservation of energy on the broad basis on which it has since stood. The best-known of Joule’s experiments was that in which a brass paddle consisting of eight arms rotated in a cylindrical vessel of water containing four fixed vanes, which allowed the passage of the arms of the paddle but prevented the water from rotating as a whole. The paddle was driven by weights, and the temperature of the water was observed by thermometers which could indicate 1/200th of a degree Fahrenheit. Special experiments were made to determine the work done against resistances outside the vessel of water, which amounted to about .006 of the whole, and corrections were made for the loss of heat by radiation, the buoyancy of the air affecting the descending weights, and the energy dissipated when the weights struck the floor with a finite velocity. From these experiments Joule obtained 72.692 foot-pounds in the latitude of Manchester as equivalent to the amount of heat required to raise 1 ℔ of water through 1° Fahr, from the freezing point. Adopting the centigrade scale, this gives 1390.846 foot-pounds.

With an apparatus similar to the above, but smaller, made of iron and filled with mercury, Joule obtained results varying from 772.814 foot-pounds when driving weights of about 58 ℔ were employed to 775.352 foot-pounds when the driving weights were only about 191/2 ℔. By causing two conical surfaces of cast-iron immersed in mercury and contained in an iron vessel to rub against one another when pressed together by a lever, Joule obtained 776.045 foot-pounds for the mechanical equivalent of heat when the heavy weights were used, and 774.93 foot-pounds with the small driving weights. In this experiment a great noise was produced, corresponding to a loss of energy, and Joule endeavoured to determine the amount of energy necessary to produce an equal amount of sound from the string of a violoncello and to apply a corresponding correction.

The close agreement between the results at least indicates that “the amount of heat produced by friction is proportional to the work done and independent of the nature of the rubbing surfaces.” Joule inferred from them that the mechanical equivalent of heat is probably about 772 foot-pounds, or, employing the centigrade scale, about 1390 foot-pounds.

Previous to determining the mechanical equivalent of heat by the most accurate experimental method at his command, Joule established a series of cases in which the production of one kind of energy was accompanied by a disappearance of some other form. In 1840 he showed that when an electric current was produced by means of a dynamo-magneto-electric machine the heat generated in the conductor, when no external work was done by the current, was the same as if the energy employed in producing the current had been converted into heat by friction, thus showing that electric currents conform to the principle of the conservation of energy, since energy can neither be created nor destroyed by them. He also determined a roughly approximate value for the mechanical equivalent of heat from the results of these experiments. Extending his investigations to the currents produced by batteries, he found that the total voltaic heat generated in any circuit was proportional to the number of electrochemical equivalents electrolysed in each cell multiplied by the electromotive force of the battery. Now, we know that the number of electrochemical equivalents electrolysed is proportional to the whole amount of electricity which passed through the circuit, and the product of this by the electromotive force of the battery is the work done by the latter, so that in this case also Joule showed that the heat generated was proportional to the work done.

In 1844 and 1845 Joule published a series of researches on the compression and expansion of air. A metal vessel was placed in a calorimeter and air forced into it, the amount of energy expended in compressing the air being measured. Assuming that the whole of the energy was converted into heat, when the air was subjected to a pressure of 21.5 atmospheres Joule obtained for the mechanical equivalent of heat about 824.8 foot-pounds, and when a pressure of only 10.5 atmospheres was employed the result was 796.9 foot-pounds.

In the next experiment the air was compressed as before, and then allowed to escape through a long lead tube immersed in the water of a calorimeter, and finally collected in a bell jar. The amount of heat absorbed by the air could thus be measured, while the work done by it in expanding could be readily calculated. In allowing the air to expand from a pressure of 21 atmospheres