In such experiments the molecular energy of a gas is converted into work only in virtue of the molecules being separated into classes in which their velocities are different, and these classes then allowed to act upon one another through the intervention of a suitable heat-engine. This sorting can occur spontaneously to a limited extent; while if we could carry it out as far as we pleased we might transform the whole of the heat of a body into work. The theoretical availability of heat is limited only by our power of bringing those particles whose motions constitute heat in bodies to rest relatively to one another; and we have precisely similar practical limits to the availability of the energy due to the motion of visible and tangible bodies, though theoretically we can then trace all the stages.
If a battery of electromotive force E maintain a current C in a conductor, and no other electromotive force exist in the circuit, the whole of the work done will be converted into heat, and the amount of work done per second will be EC. If R denote the resistance of the whole circuit, E = CR, and the heat generated per second is C2R. If the current drive an electromagnetic engine, the reaction of the engine will produce an electromotive force opposing the current. Suppose the current to be thus reduced to C′. Then the work done by the battery per second will be EC′ or CC′R, while the heat generated per second will be C’2R, so that we have the difference (C - C′)C′R for the energy consumed in driving the engine. The ratio of this to the whole work done by the battery is (C - C′)/C, so that the efficiency is increased by diminishing C′. If we could drive the engine so fast as to reduce C′ to zero, the whole of the energy of the battery would be available, no heat being produced in the wires, but the horse-power of the engine would be indefinitely small. The reason why the whole of the energy of the current is not available is that heat must always be generated in a wire in which a finite current is flowing, so that, in the case of a battery in which the whole of the energy of chemical affinity is employed in producing a current, the availability of the energy is limited only on account of the resistance of the conductors, and may be increased by diminishing this resistance. The availability of the energy of electrical separation in a charged Leyden jar is also limited only by the resistance of conductors, in virtue of which an amount of heat is necessarily produced, which is greater the less the time occupied in discharging the jar. The availability of the energy of magnetization is limited by the coercive force of the magnetized material, in virtue of which any change in the intensity of magnetization is accompanied by the production of heat.
In all cases there is a general tendency for other forms of energy to be transformed into heat on account of the friction of rough surfaces, the resistance of conductors, or similar causes, and thus to lose availability. In some cases, as when heat is converted into the kinetic energy of moving machinery or the potential energy of raised weights, there is an ascent of energy from the less available form of heat to the more available form of mechanical energy, but in all cases this is accompanied by the transfer of other heat from a body at a high temperature to one at a lower temperature, thus losing availability to an extent that more than compensates for the rise.
It is practically important to consider the rate at which energy may be transformed into useful work, or the horse-power of the agent. It generally happens that to obtain the greatest possible amount of work from a given supply of energy, and to obtain it at the greatest rate, are conflicting interests. We have seen that the efficiency of an electromagnetic engine is greatest when the current is indefinitely small, and then the rate at which it works is also indefinitely small. M. H. von Jacobi showed that for a given electromotive force in the battery the horse-power is greatest when the current is reduced to one-half of what it would be if the engine were at rest. A similar condition obtains in the steam-engine, in which a great rate of working necessitates the dissipation of a large amount of energy. (W. G.; J. L.*)
ENFANTIN, BARTHÉLEMY PROSPER (1796–1864), French
social reformer, one of the founders of Saint-Simonism, was born
at Paris on the 8th of February 1796. He was the son of a
banker of Dauphiny, and after receiving his early education at a
lyceum, was sent in 1813 to the École Polytechnique. In March
1814 he was one of the band of students who, on the heights of
Montmartre and Saint-Chaumont, attempted resistance to the
armies of the allies then engaged in the investment of Paris.
In consequence of this outbreak of patriotic enthusiasm, the
school was soon after closed by Louis XVIII., and the young
student was compelled to seek some other career instead of that of
the soldier. He first engaged himself to a country wine merchant,
for whom he travelled in Germany, Russia and the Netherlands.
In 1821 he entered a banking-house newly established at St
Petersburg, but returned two years later to Paris, where he was
appointed cashier to the Caisse Hypothécaire. At the same time
he became a member of the secret society of the Carbonari. In
1825 a new turn was given to his thoughts and his life by the
friendship which he formed with Olinde Rodriguez, who introduced
him to Saint-Simon. He embraced the new doctrines with
ardour, and by 1829 had become one of the acknowledged heads
of the sect (see Saint-Simon).
After the Revolution of 1830 Enfantin resigned his office of cashier, and devoted himself wholly to his cause. Besides contributing to the Globe newspaper, he made appeals to the people by systematic preaching, and organized centres of action in some of the principal cities of France. The headquarters in Paris were removed from the modest rooms in the Rue Taranne, and established in large halls near the Boulevard Italien. Enfantin and Bazard (q.v.) were proclaimed “Pères Suprêmes.” This union of the supreme fathers, however, was only nominal. A divergence was already manifest, which rapidly increased to serious difference and dissension. Bazard had devoted himself to political reform, Enfantin to social and moral change; Bazard was organizer and governor, Enfantin was teacher and consoler; the former attracted reverence, the latter love. A hopeless antagonism arose between them, which was widened by Enfantin’s announcement of his theory of the relation of man and woman, which would substitute for the “tyranny of marriage” a system of “free love.” Bazard now separated from his colleague, and in his withdrawal was followed by all those whose chief aim was philosophical and political. Enfantin thus became sole “father,” and the few who were chiefly attracted by his religious pretensions and aims still adhered to him. New converts joined them, and Enfantin assumed that his followers in France numbered 40,000. He wore on his breast a badge with his title of “Père,” was spoken of by his preachers as “the living law,” declared, and probably believed, himself to be the chosen of God, and sent out emissaries in a quest of a woman predestined to be the “female Messiah,” and the mother of a new Saviour. The quest was very costly and altogether fruitless. No such woman was discoverable. Meanwhile believers in Enfantin and his new religion were multiplying in all parts of Europe. His extravagances and success at length brought down upon him the hand of the law. Public morality was in peril, and in May 1832 the halls of the new sect were closed by the government, and the father, with some of his followers, appeared before the tribunals. He now retired to his estate at Menilmontant, near Paris, where with forty disciples, all of them men, he continued to carry out his socialistic views. In August of the same year he was again arrested, and on his appearance in court he desired his defence to be undertaken by two women who were with him, alleging that the matter was of special concern to women. This was of course refused. The trial occupied two days and resulted in a verdict of guilty, and a sentence of imprisonment for a year with a small fine.
This prosecution finally discredited the new society. Enfantin was released in a few months, and then, accompanied by some of his followers, he went to Egypt. He stayed there two years, and might have entered the service of the viceroy if he would have professed himself, as a few of his friends did, a Mahommedan. On his return to France, a sadder and practically a wiser man, he settled down to very prosaic work. He became first a postmaster near Lyons, and in 1841 was appointed, through the influence of some of his friends who had risen to posts of power, member of a scientific commission on Algeria, which led him to engage in researches concerning North Africa and colonization in general.