Jump to content

Page:EB1911 - Volume 09.djvu/431

From Wikisource
This page has been validated.
406
ENGHIEN—ENGINEERS, MILITARY

restoration of the old monarchy. In 1792, on the outbreak of war, he held a command in the force of émigrés (styled the “French royal army”) which shared in the duke of Brunswick’s unsuccessful invasion of France. He continued to serve under his father and grandfather in what was known as the Condé army, and on several occasions distinguished himself by his bravery and ardour in the vanguard. On the dissolution of that force after the peace of Lunéville (February 1801) he married privately the princess Charlotte, niece of Cardinal de Rohan, and took up his residence at Ettenheim in Baden, near the Rhine. Early in the year 1804 Napoleon, then First Consul of France, heard news which seemed to connect the young duke with the Cadoudal-Pichegru conspiracy then being tracked by the French police. The news ran that the duke was in company with Dumouriez and made secret journeys into France. This was false; the acquaintance was Thuméry, a harmless old man, and the duke had no dealings with Cadoudal or Pichegru. Napoleon gave orders for the seizure of the duke. French mounted gendarmes crossed the Rhine secretly, surrounded his house and brought him to Strassburg (15th of March 1804), and thence to the castle of Vincennes, near Paris. There a commission of French colonels was hastily gathered to try him. Meanwhile Napoleon had found out the true facts of the case, and the ground of the accusation was hastily changed. The duke was now charged chiefly with bearing arms against France in the late war, and with intending to take part in the new coalition then proposed against France. The colonels hastily and most informally drew up the act of condemnation, being incited thereto by orders from Savary (q.v.), who had come charged with instructions. Savary intervened to prevent all chance of an interview between the condemned and the First Consul; and the duke was shot in the moat of the castle, near a grave which had already been prepared. With him ended the house of Condé. In 1816 the bones were exhumed and placed in the chapel of the castle. It is now known that Josephine and Mme de Rémusat had begged Napoleon for mercy towards the duke; but nothing would bend his will. The blame which the apologists of the emperor have thrown on Talleyrand or Savary is undeserved. On his way to St Helena and at Longwood he asserted that, in the same circumstances, he would do the same again; he inserted a similar declaration in his will.

See H. Welschinger, Le Duc d’Enghien 1772–1804 (Paris, 1888); A. Nougaret de Fayet, Recherches historiques sur le procès et la condamnation du duc d’Enghien, 2 vols. (Paris, 1844); Comte A. Boulay de la Meurthe, Les Dernières Années du duc d’Enghien 1801–1804 (Paris, 1886). For documents see La Catastrophe du duc d’Enghien in the edition of Mémoires edited by M. F. Barrière, also the edition of the duke’s letters, &c., by Count Boulay de la Meurthe (tome i., Paris, 1904; tome ii., 1908).  (J. Hl. R.) 


ENGHIEN, a town in the province of Hainaut, Belgium, lying south of Grammont. Pop. (1904) 4541. It is the centre of considerable lace, linen and cotton industries. There is a fine park outside the town belonging to the duke of Arenberg, whose ancestor, Charles de Ligne, bought it from Henry IV. in 1607, but the château in which the duke of Arenberg of the 18th century entertained Voltaire no longer exists. Curiously enough the cottage, a stone building, built by the same duke for Jean Jacques Rousseau, still stands in the park, while the ducal residence was burnt down by the sans-culottes. A fine pavilion or kiosk, named de l’Étoile, has also survived. The great Condé was given, for a victory gained near this place, the right to use the style of Enghien among his subsidiary titles.


ENGINE (Lat. ingenium), a term which in the time of Chaucer had the meaning of “natural talent” or “ability,” corresponding to the Latin from which it is derived (cf. “A man hath sapiences thre, Memorie, engin, and intellect also,” Second Nun’s Tale, 339); in this sense it is now obsolete. It also denoted a mechanical tool or contrivance, and especially a weapon of war; this use may be compared with that of ingenium in classical Latin to mean a clever idea or device, and in later Latin, as in Tertullian, for a warlike instrument or machine. In the 19th century it came to have, when employed alone, a specific reference to the steam-engine (q.v.), but it is also used of other prime movers such as the air-engine, gas-engine and oil-engine (qq.v.).


ENGINEERING, a term for the action of the verb “to engineer,” which in its early uses referred specially to the operations of those who constructed engines of war and executed works intended to serve military purposes. Such military engineers were long the only ones to whom the title was applied. But about the middle of the 18th century there began to arise a new class of engineers who concerned themselves with works which, though they might be in some cases, as in the making of roads, of the same character as those undertaken by military engineers, were neither exclusively military in purpose nor executed by soldiers, and those men by way of distinction came to be known as civil engineers. No better definition of their aims and functions can be given than that which is contained in the charter (dated 1828) of the Institution of Civil Engineers (London), where civil engineering is described as the “art of directing the great sources of power in nature for the use and convenience of man, as the means of production and of traffic in states, both for external and internal trade, as applied in the construction of roads, bridges, aqueducts, canals, river navigation and docks for internal intercourse and exchange, and in the construction of ports, harbours, moles, breakwaters and lighthouses, and in the art of navigation by artificial power for the purposes of commerce, and in the construction and adaptation of machinery, and in the drainage of cities and towns.” Wide as is this enumeration, the practice of a civil engineer in the earlier part of the 19th century might cover many or even most of the subjects it contains. But gradually specialization set in. Perhaps the first branch to be recognized as separate was mechanical engineering, which is concerned with steam-engines, machine tools, mill-work and moving machinery in general, and it was soon followed by mining engineering, which deals with the location and working of coal, ore and other minerals. Subsequently numerous other more or less strictly defined groups and subdivisions came into existence, such as naval architecture dealing with the design of ships, marine engineering with the engines for propelling steamers, sanitary engineering with water-supply and disposal of sewage and other refuse, gas engineering with the manufacture and distribution of illuminating gas, and chemical engineering with the design and erection of the plant required for the manufacture of such chemical products as alkali, acids and dyes, and for the working of a wide range of industrial processes. The last great new branch is electrical engineering, which touches on the older branches at so many points that it has been said that all engineers must be electricians.


ENGINEERS, MILITARY. From the earliest times engineers have been employed both in the field of war and on field defences. In modern times, however, the application of numerous scientific and engineering devices to warfare has resulted in the creation of many minor branches of military engineering, some of them almost rivalling in importance their primary duty of fortification and siegecraft, such as the field telegraph, the balloon service, nearly all demolitions, the building of pontoon and other bridges, and the construction and working of military roads, railways, piers, &c. All these branches requiring special knowledge, the modern tendency is to divide a corps of engineers in accordance with such requirements. The “field companies” and “fortress companies” of the R.E. represent the traditional tactical application of their arm to works of offence and defence in field and siege warfare. The balloon, telegraph, and other branches, also organized on a permanent footing, represent the modern application of scientific aids in warfare. (See Fortification and Siegecraft; Tactics; Infantry, &c.)

History.—It is difficult to distinguish between military and civil engineers in the earlier ages of modern history, for all engineers acted as builders of castles and defensible strongholds, as well as manufacturers and directors of engines of war with which to attack or defend them. The annals of fortification show professors, artists, &c., as well as soldiers and architects, as designers and builders of innumerable systems of fortification. By the middle of the 13th century there was in England an organized body of skilled workmen employed under a “chief engineer.” At the siege of Calais in 1347 this corps consisted of masons, carpenters, smiths, tentmakers, miners, armourers,