Page:EB1911 - Volume 10.djvu/530

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
512
FLIGHT AND FLYING


which continues its effect, and naturally acts upon the surface which it strikes, has the power of resolving itself into two forces, a vertical and a horizontal force; the first suffices to raise the animal, the second to move it along.”[1] Marey, it will be observed, reproduces Borelli’s artificial wing, and even his text, at a distance of nearly two centuries.

The artificial wing recommended by Pettigrew is a more exact imitation of nature than either of the foregoing. It is of a more or less triangular form, thick at the root and anterior margin, and thin at the tip and posterior margin. No part of it is rigid. It is, on the contrary, highly elastic and flexible throughout. It is furnished with springs at its root to contribute to its continued play, and is applied to the air by a direct piston action in such a way that it descends in a downward and forward direction during the down stroke, and ascends in an upward and forward direction during the up stroke. It elevates and propels both when it rises and falls. It, moreover, twists and untwists during its action and describes figure-of-8 and waved tracks in space, precisely as the natural wing does. The twisting is most marked at the tip and posterior margin, particularly that half of the posterior margin next the tip. The wing when in action may be divided into two portions by a line running diagonally between the tip of the wing anteriorly and the root of the wing posteriorly. The tip and posterior parts of the wing are more active than the root and anterior parts, from the fact that the tip and posterior parts (the wing is an eccentric) always travel through greater spaces, in a given time, than the root and anterior parts.

Fig. 32.—Elastic Spiral Wing, which twists and untwists during its action, to form a mobile helix or screw. This wing is made to vibrate by a direct piston action, and by a slight adjustment can be propelled vertically, horizontally or at any degree of obliquity.

a b, Anterior margin of wing, to
which the neurae or ribs
are affixed.
c d, Posterior margin of wing
crossing anterior one.
x, Ball-and-socket joint at root
of wing, the wing being
attached to the side of the
cylinder by the socket.
t,  Cylinder.
r r, Piston, with cross heads
(w, w) and piston head (s).

o o, Stuffing boxes.
e, f, Driving chains.
m, Superior elastic band, which
assists in elevating the wing.
n, Inferior elastic band, which antagonizes m. The alternate stretching of the superior and inferior elastic bands contributes to the continuous play of the wing, by preventing dead points at the end of the down and up strokes. The wing is free to move in a vertical and horizontal direction and at any degree of obliquity.

The wing is so constructed that the posterior margin yields freely in a downward direction during the up stroke, while it yields comparatively little in an upward direction during the down stroke; and this is a distinguishing feature, as the wing is thus made to fold and elude the air more or less completely during the up stroke, whereas it is made to expand and seize the air with avidity during the down stroke. The oblique line referred to as running diagonally across the wing virtually divides the wing into an active and a passive part, the former elevating and propelling, the latter sustaining.

It is not possible to determine with exactitude the precise function discharged by each part of the wing, but experiment tends to show that the tip of the wing elevates, the posterior margin propels, and the root sustains.

The wing—and this is important—is driven by a direct pistonaction with an irregular hammer-like movement, the pinion having communicated to it a smart click at the beginning of every down stroke—the up stroke being more uniform. The following is the arrangement (fig. 32). If the artificial wing here represented (fig. 32) be compared with the natural wing as depicted at fig. 33, it will be seen that there is nothing in the one which is not virtually reproduced in the other. In addition to the foregoing, Pettigrew recommended a double elastic wing to be applied to the air like a steam-hammer, by being fixed to the head of the piston. This wing, like the single wing described, twists and untwists as it rises and falls, and possesses all the characteristics of the natural wing (fig. 34).

Fig. 33 shows the Spiral Elastic Wings of the Gull. Each wing forms a mobile helix or screw.
a b, Anterior margin of left wing.
c d, Posterior margin of ditto.
d g, Primary or rowing feathers
of left wing.
g a, Secondary feathers ditto.
x, Root of right wing with ball-
and-socket joint.
l,  Elbow joint.
m, Wrist joint,
n,o, Hand and finger joints.
Fig. 34.—Double Elastic Wing driven by direct piston action. During the up stroke of the piston the wing is very decidedly convex on its upper surface (a b c d, A A′); its under surface (e f g h, A A′) being deeply concave and inclined obliquely upwards and forwards. It thus evades, to a considerable extent, the air during the up stroke. During the down stroke of the piston the wing is flattened out in every direction, and its extremities twisted in such a manner as to form two screws, as seen at abcd′, efgh′, B, B′. The active area of the wing is by this arrangement considerably diminished during the up stroke, and considerably augmented during the down stroke; the wing seizing the air with greater avidity during the down than during the up stroke. i, j, k, elastic band to regulate the expansion of the wing; l, piston; m, piston head; n, cylinder.

He also recommends an elastic aerial screw consisting of two blades, which taper and become thinner towards the tips and posterior margins. When the screw is made to rotate, the blades, because of their elasticity, assume a great variety of angles, the angles being least where the speed of the blades is greatest and vice versa. The pitch of the blades is thus regulated by the speed attained (fig. 35).

The peculiarity of Pettigrew’s wings and screws consists in their elasticity, their twisting action, and their great comparative length and narrowness. They offer little resistance to the air when they are at rest, and when in motion the speed with which they are driven is such as to ensure that the comparatively large spaces through which they travel shall practically be converted into solid bases of support.

After Pettigrew enunciated his views (1867) as to the screw configuration and elastic properties of natural wings, and more especially after his introduction of spiral, elastic artificial wings, and elastic screws, a great revolution took place in the construction of flying models. Elastic aeroplanes were advocated by

  1. E. J. Marey, Revue des cours scientifiques de la France et de l’étranger (1869).