Page:EB1911 - Volume 10.djvu/532

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
514
FLIGHT AND FLYING


All the models referred to (Cayley’s excepted[1]) were provided with rigid screws. In 1872 Pénaud discarded the rigid screws in favour of elastic ones, as Pettigrew had done some years before.

Fig. 38.—Hélicoptère or Screw-Model, by Pénaud.

Pénaud also substituted india-rubber under torsion for the whalebone and clock springs of the smaller models, and the steam of the larger ones. His hélicoptère or screw-model is remarkable for its lightness, simplicity and power. The accompanying sketch will serve to illustrate its construction (fig. 38). It consists of two superposed elastic screws (a a, b b), the upper of which (a a) is fixed in a vertical frame (c), which is pivoted in the central part (d) of the under screw. From the centre of the under screw an axle provided with a hook (e), which performs the part of a crank, projects in an upward direction. Between the hook or crank (e) and the centre of the upper screw (a a), the india-rubber in a state of torsion (f) extends. By fixing the lower screw and turning the upper one a sufficient number of times the requisite degree of torsion and power is obtained. The apparatus when liberated flies into the air sometimes to a height of 50 ft., and gyrates in large circles for a period varying from 15 to 30 seconds.

Pénaud next directed his attention to the construction of a model, to be propelled by a screw and sustained by an elastic aeroplane extending horizontally. Sir George Cayley proposed such a machine in 1810, and W. S. Henson constructed and patented a similar machine in 1842. Several inventors succeeded in making models fly by the aid of aeroplanes and screws, as, e.g. J. Stringfellow in 1847,[2] and F. du Temple in 1857. These models flew in a haphazard sort of a way, it being found exceedingly difficult to confer on them the necessary degree of stability fore and aft and laterally. Pénaud succeeded in overcoming the difficulty in question by the invention of what he designated an automatic rudder. This consisted of a small elastic aeroplane placed aft or behind the principal aeroplane which is also elastic. The two elastic aeroplanes extended horizontally and made a slight upward angle with the horizon, the angle made by the smaller aeroplane (the rudder) being slightly in excess of that made by the larger. The motive power was india-rubber in the condition of torsion; the propeller, a screw. The reader will understand the arrangement by a reference to the accompanying drawing (fig. 39).

Models on the aeroplane screw type may be propelled by two screws, one fore and one aft, rotating in opposite directions; and in the event of only one screw being employed it may be placed in front of or behind the aeroplane.

When such a model is wound up and let go it descends about 2 ft., after which, having acquired initial velocity, it rises and flies in a forward direction at a height of from 8 to 10 ft. from the ground for a distance of from 120 to 130 ft. It flies this distance in from 10 to 11 seconds, its mean speed being something like 12 ft. per second. From experiments made with this model, Pénaud calculates that one horse-power would elevate and support 85 ℔.

Fig. 39.—Aeroplane Model with Automatic Rudder.
a a, Elastic aeroplane.
b b, Automatic rudder.
c c, Aerial screw centred at f.
d, Frame supporting aeroplane,
rudder and screw.
e, India-rubber, in a state of
torsion, attached to hook
or crank at f. By holding
the aeroplane (a a) and
turning the screw (c c) the
necessary power is obtained
by torsion. (Pénaud.)

D. S. Brown also wrote (1874) in support of elastic aero-biplanes. His experiments proved that two elastic aeroplanes united by a central shaft or shafts, and separated by a wide interval, always produce increased stability. The production of flight by the vertical flapping of wings is in some respects the most difficult, but this also has been attempted and achieved. Pénaud and A. H. de Villeneuve each constructed winged models. Marey was not so fortunate. He endeavoured to construct an artificial insect on the plan advocated by Borelli, Strauss-Dürckheim and Chabrier, but signally failed, his insect never having been able to lift more than a third of its own weight.

Fig. 40.—Pénaud’s Artificial Flying Bird.

a b c d, a′ b′ c′ d′, Elastic wings,
which twist and untwist
when made to vibrate.
a b, a′ b′, Anterior margins of wings.
c d, c′ d′, Posterior margins of wings.

c, c′, Inner portions of wings
attached to central shaft of
model by elastic bands at e.
f,India-rubber in a state of
torsion, which provides the
motive power, by causing
the crank situated between
the vertical wing supports
(g) to rotate; as the crank
revolves the wings are made
to vibrate by means of two
rods which extend between
the crank and the roots of
the wings.
h,Tail of artificial bird.

De Villeneuve and Pénaud constructed their winged models on different types, the former selecting the bat, the latter the bird. De Villeneuve made the wings of his artificial bat conical in shape and comparatively rigid. He controlled the movements of the wings, and made them strike downwards and forwards in imitation of natural wings. His model possessed great power of rising. It elevated itself from the ground with ease, and flew in a horizontal direction for a distance of 24 ft., and at a velocity of 20 m. an hour. Pénaud’s model differed from de Villeneuve’s in being provided with elastic wings, the posterior margins of which in addition to being elastic were free to move round the

  1. Cayley’s screws, as explained, were made of feathers, and consequently elastic. As, however, no allusion is made in his writings to the superior advantages possessed by elastic over rigid screws, it is to be presumed that feathers were employed simply for convenience and lightness. Pettigrew, there is reason to believe, was the first to advocate the employment of elastic screws for aerial purposes.
  2. Stringfellow constructed a second model, which is described and figured further on (fig. 44).