Jump to content

Page:EB1911 - Volume 10.djvu/589

From Wikisource
This page has been proofread, but needs to be validated.
568
FLOWER

plants as Mesembryanthemum, where there is a multiplication of petals in several rows. Sometimes, as in Canna, one of the anther-lobes becomes abortive, and a petaloid appendage is produced. Stamens vary in length as regards the corolla. Some are enclosed within the tube of the flower, as in Cinchona (included); others are exserted, or extend beyond the flower, as in Littorella or Plantago. Sometimes the stamens in the early state of the flower project beyond the petals, and in the progress of growth become included, as in Geranium striatum. Stamens also vary in their relative lengths. When there is more than one row or whorl in a flower, those on the outside are sometimes longest, as in many Rosaceae; at other times those in the interior are longest, as in Luhea. When the stamens are in two rows, those opposite the petals are usually shorter than those which alternate with the petals. It sometimes happens that a single stamen is longer than all the rest. A definite relation, as regards number, sometimes exists between the long and the short stamens. Thus, in some flowers the stamens are didynamous, having only four out of five stamens developed, and the two corresponding to the upper part of the flower longer than the two lateral ones. This occurs in Labiatae and Scrophulariaceae (fig. 76). Again, in other cases there are six stamens, whereof four long ones are arranged in pairs opposite to each other, and alternate with two isolated short ones (fig. 77), giving rise to tetradynamous flowers, as in Cruciferae. Stamens, as regards their direction, may be erect, turned inwards, outwards, or to one side. In the last-mentioned case they are called declinate, as in amaryllis, horse-chestnut and fraxinella.

Fig. 76.—Corolla of foxglove (Digitalis purpurea), cut in order to show the didynamous stamens (two long and two short) which are attached to it.

From Strasburger’s Lehrbuch der Botanik, by permission of Gustav Fischer.

Fig. 77.—Tetradynamous stamens (four long and two short) of wallflower (Cheiranthus Cheiri).

Fig. 78. Fig. 79. Fig. 80.

Fig. 78.—Pollinia, or pollen-masses, with their retinacula (g) or viscid matter attaching them at the base. The pollen masses (p) are supported on stalks or caudicles (c). These masses are easily detached by the agency of insects. Much enlarged.

Fig. 79.—Pistil of Asclepias (a) with pollen-masses (p) adhering to the stigma (s). b, pollen-masses, removed from the stigma, united by a gland-like body. Enlarged.

Fig. 80.—Stamen of Asclepias, showing filament f, anther a, and appendages p. Enlarged.

Fig. 81.—Pollen of Hollyhock (Althaea rosea), highly magnified.

The pollen-grains or microspores contained in the anther consist of small cells, which are developed in the large thick-walled mother-cells formed in the interior of the pollen-sacs (microsporangia) of the young anther. These mother-cells are either separated from one another and float in the granular fluid which fills up the cavity of the pollen-sac, or are not so isolated. A division takes place, by which four cells are formed in each, the exact mode of division differing in dicotyledons and monocotyledons. These cells are the pollen-grains. They increase in size and acquire a cell-wall, which becomes differentiated into an outer cuticular layer, or extine, and an inner layer, or intine. Then the walls of the mother-cells are absorbed, and the pollen-grains float freely in the fluid of the pollen-sacs, which gradually disappears, and the mature grains form a powdery mass within the anther. They then either remain united in fours, or multiples of four, as in some acacias, Periploca graeca and Inga anomala, or separate into individual grains, which by degrees become mature pollen. Occasionally the membrane of the mother-cell is not completely absorbed, and traces of it are detected in a viscid matter surrounding the pollen-grains, as in Onagraceae. In orchidaceous plants the pollen-grains are united into masses, or pollinia (fig. 78), by means of viscid matter. In orchids each of the pollen-masses has a prolongation or stalk (caudicle) which adheres to a prolongation at the base of the anther (rostellum) by means of a viscid gland (retinaculum) which is either naked or covered. The term clinandrium is sometimes applied to the part of the column in orchids where the stamens are situated. In some orchids, as Cypripedium, the pollen has its ordinary character of separate grains. The number of pollinia varies; thus, in Orchis there are usually two, in Cattleya four, and in Laelia eight. The two pollinia in Orchis Morio contain each about 200 secondary smaller masses. These small masses, when bruised, divide into grains which are united in fours. In Asclepiadaceae the pollinia are usually united in pairs (fig. 79), belonging to two contiguous anther-lobes—each pollen-mass having a caudicular appendage, ending in a common gland, by means of which they are attached to a process of the stigma. The pollinia are also provided with an appendicular staminal covering (fig. 80). The extine is a firm membrane, which defines the figure of the pollen-grain, and gives colour to it. It is either smooth, or covered with numerous projections (fig. 81), granules, points or crested reticulations. The colour is generally yellow, and the surface is often covered with a viscid or oily matter. The intine is uniform in different kinds of pollen, thin and transparent, and possesses great power of extension. In some aquatics, as Zostera, Zannichellia, Naias, &c., only one covering exists.

From Vines’ Students’ Text-Book of Botany, by permission of Swan Sonnenschein & Co.

Fig. 83.—Male flower of Pellitory (Parietaria officinalis), having four stamens with in-curved elastic filaments, and an abortive pistil in the centre. When the perianth (p) expands, the filaments are thrown out with force as at a, so as to scatter the pollen.

Fig. 82.—Germinating pollen-grain of Epilobium (highly mag.) bearing a pollen-tube s; e, exine; i, intine; abc, the three spots where the exine is thicker in anticipation of the formation of the pollen-tube developed in this case at a.

Pollen-grains vary from 1/300 to 1/700 of an inch or less in diameter. Their forms are various. The most common form of grain is ellipsoidal, more or less narrow at the extremities, which are called its poles, in contradistinction to a line equidistant from the extremities, which is its equator. Pollen-grains are also spherical; cylindrical and curved, as in Tradescantia virginica; polyhedral in Dipsacaceae and Compositae; nearly triangular in section in Proteaceae and Onagraceae (fig. 82). The surface of the pollen-grain is either uniform and homogeneous, or it is marked by folds formed by thinnings of the membrane. There are also rounded portions of the membrane or pores visible in the pollen-grain; these vary in number from one to fifty, and through one