Jump to content

Page:EB1911 - Volume 10.djvu/592

From Wikisource
This page has been proofread, but needs to be validated.
FLOWER
571

carpellary leaves, and that in the progress of development these leaves separated from them, leaving the placentas and ovules free in the centre; or by supposing that the placentas are not marginal but axile formations, produced by an elongation of the axis, and the carpels verticillate leaves, united together around the axis. The first of these views applies to Caryophyllaceae, the second to Primulaceae.

Fig. 101.  Fig. 102. 
Fig. 104. Fig. 103.

Fig. 101.—Carpel of Lady’s-mantle (Alchemilla) with lateral style s; o, ovary, st, stigma. Enlarged.

Fig. 102.—Pistil of Primrose (Primula) composed of five carpels which are completely united; o, ovary; s, style; st, stigma. Enlarged.

Fig. 103.—Gynoecium of the Flower-de-Luce (Iris), consisting of an inferior ovary (o) and a style which divides into three petaloid segments (s), each bearing a stigma (st).

Fig. 104.—Capsule of Poppy, opening by pores (p), under the radiating peltate stigma (s).

Occasionally, divisions take place in ovaries which are not formed by the edges of contiguous carpels. These are called spurious dissepiments. They are often horizontal, as in Cathartocarpus Fistula, where they consist of transverse cellular prolongations from the walls of the ovary, only developed after fertilization, and therefore more properly noticed under fruit. At other times they are vertical, as in Datura, where the ovary, in place of being two-celled, becomes four-celled; in Cruciferae, where the prolongation of the placentas forms a vertical partition; in Astragalus and Thespesia, where the dorsal suture is folded inwards; and in Oxytropis, where the ventral suture is folded inwards.

The ovary is usually of a more or less spherical or curved form, sometimes smooth and uniform on its surface, at other times hairy and grooved. The grooves usually indicate the divisions between the carpels and correspond to the dissepiments. The dorsal suture may be marked by a slight projection or by a superficial groove. When the ovary is situated on the centre of the receptacle, free from the other whorls, so that its base is above the insertion of the stamens, it is termed superior, as in Lychnis, Primula (fig. 61) and Peony (fig. 64) (see also fig. 28). When the margin of the receptacle is prolonged upwards, carrying with it the floral envelopes and staminal leaves, the basal portion of the ovary being formed by the receptacle, and the carpellary leaves alone closing in the apex, the ovary is inferior, as in pomegranate, aralia (fig. 65), gooseberry and fuchsia (see fig. 30). In some plants, as many Saxifragaceae, there are intermediate forms, in which the term half-inferior is applied to the ovary, whilst the floral whorls are half-superior.

The style proceeds from the summit of the carpel (fig. 102), and is traversed by a narrow canal, in which there are some loose projecting cells, a continuation of the placenta, constituting what is called conducting tissue, which ends in the stigma. This is particularly abundant when The style. the pistil is ready for fertilization. In some cases, owing to more rapid growth of the dorsal side of the ovary, the style becomes lateral (fig. 101); this may so increase that the style appears to arise from near the base, as in the strawberry, or from the base, as in Chrysobalanus Icaco, when it is called basilar. In all these cases the style still indicates the organic apex of the ovary, although it may not be the apparent apex. When in a compound pistil the style of each carpel is thus displaced, it appears as if the ovary were depressed in the centre, and the style rising from the depression in the midst of the carpels seems to come from the torus. Such a style is gynobasic, and is well seen in Boraginaceae. The form of the style is usually cylindrical, more or less filiform and simple; sometimes it is grooved on one side, at other times it is flat, thick, angular, compressed and even petaloid, as in Iris (fig. 103) and Canna. In Goodeniaceae it ends in a cuplike expansion, enclosing the stigma. It sometimes bears hairs, which aid in the application of the pollen to the stigma, and are called collecting hairs, as in Campanula, and also in Aster and other Compositae. These hairs, during the upward growth of the style, come into contact with the already ripened pollen, and carry it up along with them, ready to be applied by insects to the mature stigma of other flowers. In Vicia and Lobelia the hairs frequently form a tuft below the stigma. The styles of a syncarpous pistil are either separate or united; when separate, they alternate with the septa; when united completely, the style is said to be simple (fig. 102). The style of a single carpel, or of each carpel of a compound pistil, may also be divided. Each division of the tricarpellary ovary of Jatropha Curcas has a bifurcate or forked style, and the ovary of Emblica officinalis has three styles, each of which is twice forked. The length of the style is determined by the relation which should subsist between the position of the stigma and that of the anthers, so as to allow the proper application of the pollen. The style is deciduous or persists after fertilization.

The stigma is the termination of the conducting tissue of the style, and is usually in direct communication with the placenta. It consists of loose cellular tissue, and secretes a viscid matter which detains the pollen, and causes it to The stigma. germinate. This secreting portion is, strictly speaking, the true stigma, but the name is generally applied to all the divisions of the style on which the stigmatic apparatus is situated. The stigma alternates with the dissepiments of a syncarpous pistil, or, in other words, corresponds with the back of the loculaments; but in some cases it would appear that half the stigma of one carpel unites with half that of the contiguous carpel, and thus the stigma is opposite the dissepiments, that is, alternates with the loculaments, as in the poppy.

Fig. 105.—Flower of a grass with glumes removed, showing three stamens and two feathery styles. p, Pale; l, lodicules. Enlarged.

The divisions of the stigma mark the number of carpels which compose the pistil. Thus in Campanula a five-cleft stigma indicates five carpels; in Bignoniaceae, Scrophulariaceae and Acanthaceae, the two-lobed or bilamellar stigma indicates a bilocular ovary. Sometimes, however, as in Gramineae, the stigma of a single carpel divides. Its position may be terminal or lateral. In Iris it is situated on a cleft on the back of the petaloid divisions of the style (fig. 103). Some stigmas, as those of Mimulus, present sensitive flattened laminae, which close when touched. The stigma presents various forms. It may be globular, as in Mirabilis Jalapa; orbicular, as in Arbutus Andrachne; umbrella-like, as in Sarracenia, where, however, the proper stigmatic surface is beneath the angles of the large expansion of the apex of the style; ovoid, as in fuchsia; hemispherical; polyhedral; radiating, as in the poppy (fig. 104), where the true stigmatic rays are attached to a sort of peltate or shield-like body, which may represent depressed or flattened styles; cucullate, i.e. covered by a hood, in calabar bean. The lobes of a stigma are flat and pointed as in Mimulus and Bignonia, fleshy and blunt, smooth or granular, or they are feathery, as in many grasses (fig. 105) and other wind-pollinated flowers. In Orchidaceae the stigma is situated on the anterior surface of the column beneath the anther. In Asclepiadaceae the stigmas are united to the face of the anthers, and along with them form a solid mass.

The ovule is attached to the placenta, and destined to become the seed. Ovules are most usually produced on the margins of