civilian population, and those who remained were chiefly dockyard workmen, able to give most valuable assistance on the defence works. The circumstances were therefore exceptionally favourable to an active defence. The weak point about the extemporized earthworks, which eventually led to the fall of the place, was the want of good bomb-proof cover near the parapets.
The Franco-German War of 1870 produced no great novelty. The Germans were not anxious to undertake siege operations when it could be avoided. In several cases minor fortresses surrendered after a slight bombardment. In others, after the bombardment failed, the Germans Franco-German War. contented themselves with establishing a blockade or detaching a small observing force. By far the most interesting siege was that of Belfort (q.v.). Here Colonel Denfert-Rochereau employed the active defence so successfully by extemporizing detached redoubts and fortifying outlying villages, that he obliged the besiegers (who, however, were a small force at first) to take up an investing line 25 m. long; and succeeded in holding the village of Danjoutin, 2000 yds. in advance of the enceinte, for two months after the siege began. He also used indirect fire, withdrawing guns from the ramparts and placing them in the ditches, in the open spaces of the town, &c. At Paris the French found great advantage in placing batteries in inconspicuous positions outside the forts. Their direct fire guns were at a disadvantage in being fired through embrasures. These had served their purpose when artillery fire was very inaccurate, but had now for a long time been recognized by the best engineers as out of date. The Germans since the siege of Düppel in 1864 had mounted their siege guns on “overbank” carriages; that is, high carriages which made it possible to fire the guns over the parapet of the battery without embrasures. The guns in the Paris forts which were further handicapped by conspicuous parapets and the bad shooting of the gunners were easily silenced.
At Strassburg indirect fire against escarps was used. The escarp of Lunette 53 was successfully breached by this method. The breaching battery was 870 yds. distant, and the shot struck the face of the wall at an angle (horizontally) of 55°, the effect being observed and reported from the counterscarp. 1000 rounds from 60-pounder guns sufficed to make a breach 30 yds. wide.
Fig. 71 is a good example of the attack in the late stages. It will be observed that batteries for mortars and field guns are established in the captured lunettes. The narrow wet ditch of Lunette 53 was crossed by a dam of earth and fascines, the headway protected by a parapet or screen of sandbags.
“Lunette 52 was unrevetted, and its ditch was more than 60 yds. wide, and 6 to 9 ft. deep.... It was determined to effect the passage by a cask bridge, for which the casks were furnished by breweries near at hand.... The formation of the bridge was begun at nightfall. A pioneer swam across, hauled over a cable, and made it fast to the hedge on the berm. Four men were stationed in the water, close to the covered way, the casks were rolled down to them one after the other, and fitted with saddles, so as to form piers ... these piers were successively boomed out along the line of the cable.... In two hours the bridge was finished, and the lunette was entered.... The work had not been discovered by the besieged, and the formation of lodgments inside the lunette was already begun, when the noise made by some troops in passing the bridge attracted attention, and drew a fire which cost the besiegers about 50 men. A dam was afterwards substituted for the bridge, as it was repeatedly struck by shells.” (R.E. Professional Papers, vol. xix.)
It is curious to realize that this happened at so recent a time. Such operations would be impossible now, as long as any defending guns remained in action.
On the whole it may be said that siegecraft gained practically nothing from the Franco-German War. The Russo-Turkish war taught less, Plevna (q.v.) having been defended by field works and attacked by the old-fashioned methods. For the last ten years of the 19th century Modern siege warfare. military opinion was quite at a loss as to how the sieges of the future would work out. As guns and projectiles continued to improve the “attaque brusquée” proposed by von Sauer had many adherents. It was thought that a heavy bombardment would paralyse resistance and open the way for an attack, to be delivered by great numbers and with special appliances for crossing obstacles. Others thought that the strength of the defence, as manifested by the Plevna field works, would be greater than ever when the field works were backed by permanent works, good communications and the resources of a fortress. One thing was obvious—namely, that as long as the artillery of the place, of even the smallest calibres, remained unsubdued, the difficulty of trenchwork and sapping would be enormously increased, and no one seemed to have formed a clear conception of how that difficulty was to be met. A lecture delivered in Germany about 1895 is worth quoting as a fair example of the vagueness of idea then prevailing: “For the attack, the following is the actual procedure: Accumulation and preparation of material for attack before the fortress: advance of attacking artillery, covered by infantry. Artillery duel. Throwing forward of infantry: destruction of the capability for defence of the position attacked; when possible by long-range artillery fire, otherwise by the aid of the engineers. Occupation of the defensive position. Assault on the inner lines of the fortress.” That seemed quite a simple prescription, but the necessary drugs were wanting. And even since Port Arthur great uncertainty as to the future of the attack remains.
< |
From Textbook of Fortification, by permission of the Controller H.M. Stationery Office. |
Fig. 71.—Strassburg, Lunettes 52 and 53, 1870. |
Modern artillery has much simplified the construction of siege batteries. Formerly siege batteries and rampart batteries opposed each other with direct fire at ranges not too long for the unaided human eye, and the shells, travelling with low velocity, bit into the parapets, and, exploding, produced their full effect. Accordingly the task of the gunners was, by accurate fire, to destroy the parapets and embrasures, and to dismount the guns. The parapets of siege batteries were therefore made from 18 to 30 ft. thick, and the construction of such batteries, with traverses, &c., involved much work. The height of parapet necessary for proper protection being 7 ft. 6 in. to 8 ft., a great deal of labour could be saved by sinking the gun-platforms about 4 ft. below the surface level, but of course this was only possible where rock or water were not near the surface.
The effect of modern projectiles was to reduce the thickness of earth necessary for parapets. High velocity projectiles are very easily deflected upwards by even a slight bank of earth. This is