are being lessened continually. There are two broad departments between which machine-moulding is divided. One, of less importance, is that of toothed wheels; the other is that of general work, except of a very massive character.
Fig. 8. | Fig. 9. |
Gear-wheel moulding machines are essentially a special adaptation of the mechanism of the dividing engine, by means of which, instead of using a complete pattern of a toothed wheel, two or three pattern teeth are used, and the machine takes charge of the correct pitching or division of the teeth moulded therefrom, leaving to the moulder the work only of turning the handle of the division plate, and ramming the sand around the pattern teeth. The result is accurate pitching, and the use of two or three teeth instead of a full pattern, together with any core boxes and striking boards that are necessary for the arms.
The other department of machine moulding includes nearly every conceivable class of work of small and medium dimensions. There are some dozens of distinct types of machines in use, for no one type is suitable for all classes of moulds, while some are designed specially for one or two kinds only.
Fig. 10. |
The fundamental principles of operation are briefly these: The pattern parts constitute, by their method of attachment to a plate or table A (fig. 10), an integral portion of the machine, so that they must partake of certain movements which are imparted to it. Often patterns mounted, as in fig. 10, are moulded by hand, without any aid from a machine, by methods of “plate-moulding.” The delivery of the pattern from the sand is invariably accomplished by a perpendicular movement of a portion of the machine (fig. 11), withdrawing either the pattern from the mould or the mould from the pattern. The important point is that the perpendicular movement, being under the coercion of the vertical guides provided in the hand machines, or the hydraulic ram in fig. 11, is free from the unsteadiness which is incidental to withdrawal by the hands of the moulder; and if the machine performed nothing more than this it would justify its existence. Little or no taper is required in the pattern, and the moulds are more nearly uniform in dimensions than hand-made moulds. But there are other advantages. In machine-moulding the joint faces for parting moulds are produced by the faces of the plates on which the pattern is mounted (figs. 10 and 11), instead of by the hands and trowel of the moulder. When the joint face is of irregular outline, as it often is, this item alone saves a good deal of time, which again is multiplied by the number of moulds repeated, often amounting to thousands. Further, provision is generally made on machine plates for the ingates and runners (fig. 10) through which the metal enters the mould, the preparation of which in hand work occupies a considerable amount of time. Another great advantage applies especially to the case of deep moulds. These give much trouble in hand-moulding in consequence of the liability of the sand to become torn up during the withdrawal of the pattern. But in machine-moulding such patterns are encircled by a plate, termed a “stripping plate,” which is pierced to allow the patterns to pass through, and which, being maintained firmly on the sand during the lifting of the pattern, prevents it from becoming torn up. This is not merely a matter of convenience, but is a necessity in numerous instances. The most familiar example is that of the teeth of gear wheels, in which even a very slight amount of taper interferes with accurate engagement, and this is representative of many other portions of mechanism. These stripping plates are of metal, but in order to save the cost of filing them in iron or steel, many are cheaply made by casting a white metal alloy round the actual pattern itself in the first place, the white metal being enclosed and retained in a plain iron frame which forms the body of the plate. Lastly, many machines, but not the majority, include provision for mechanically ramming the sand around the pattern by power instead of by hand. This is really the least valuable feature of a moulding machine, because it is not applicable to any but rather shallow moulds. It is commonly used for these, but the consistence and homogeneity of a mass of sand round a pattern having deep perpendicular sides can only be ensured by careful hand ramming.
Fig. 11. |
The highest economies of machine-moulding are obtained when (1) several small patterns are mounted and moulded at once on a single plate (fig. 10); (2) when top and bottom parts of a mould are produced on different machines, carrying each its moiety of the pattern; (3) when the machine and pattern details are simplified so much that the labour of trained moulders is displaced by that of unskilled attendants who are taught in a month or two the few simple operations required. That is the direction in which repetitive casting is now rapidly tending.
In fig. 11 A is the plate, which in its essentials corresponds with the plate A in fig. 10, but which in the machine is made to swivel so as to bring each half of the pattern B, B in turn uppermost for ramming in the box parts C, C. The ramming is done by hand, the final squeeze being imparted against the presser D by the action of the hydraulic ram E pushing the plate, mould and box up against D. The plate being then lowered, and turned over, the further descent of the ram withdraws the bottom box from the pattern, which is the stage seen in the illustration. Then the half mould is run away on the carriage F, provided with wheels to run on rails.
Though casting in iron, steel, the bronzes, aluminium, &c., is