Page:EB1911 - Volume 11.djvu/591

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
GEM, ARTIFICIAL
571


Near the centre, where most of the fragments have been found, is a crater with raised edges, three-quarters of a mile in diameter and 600 ft. deep, bearing just the appearance which would be produced had a mighty mass of iron—a falling star—struck the ground, scattered it in all directions, and buried itself deeply under the surface, fragments eroded from the surface forming the pieces now met with. Altogether ten tons of this iron have been collected, and specimens of the Canyon Diablo meteorite are in most collectors’ cabinets. Dr A. E. Foote, a mineralogist, when cutting a section of this meteorite, found the tools injured by something vastly harder than metallic iron, and an emery wheel used for grinding it was ruined. He attacked the specimen chemically, and soon afterwards announced to the scientific world that the Canyon Diablo meteorite contained diamonds, both black and transparent. This startling discovery was subsequently verified by Professors C. Friedel and H. Moissan, and also by Sir W. Crookes.

The Ruby.—It is evident that of the other precious stones only the most prized are worth producing artificially. Apart from their inferior hardness and colour, the demand for what are known as “semi-precious stones” would not pay for the necessarily great expenses of the factory. Moreover, were it to be known that they were being produced artificially the demand—never very great—would almost cease. The only other gems, therefore, which need be mentioned in connexion with their artificial formation are those of the corundum or sapphire class, which include all the most highly prized gems, rivalling, and sometimes exceeding, the diamond in value. Here a remarkable and little-known fact deserves notice. Excepting the diamond and sapphire, each of the precious stones—the emerald, the topaz and amethyst—possesses a more noble, a harder, and more highly-prized counterpart of itself, alike in colour, but superior in brilliancy and hardness; still more strange, the precious stone to which its special name is usually attached is the variety the least prized. The ruby itself might almost be included in the same category. The true ruby consists of the earth alumina, in a clear, crystalline form, having a minute quantity of the element chromium as the colouring matter. It is often called the “Oriental Ruby,” or red sapphire, and when of a paler colour, the “Pink Sapphire.” But the ruby as met with in jewellers’ shops of inferior standing is usually no true ruby, but a “spinel ruby” or “balas ruby,” sometimes very beautiful in colour, but softer than the Oriental ruby, and different in chemical composition, consisting essentially of alumina and magnesia and a little silica, with the colouring matter chromium. The colourless basis of the true Oriental precious stones being taken as crystallized alumina or white sapphire, when the colouring matter is red the stone is called ruby, when blue sapphire, when green Oriental emerald, when orange-yellow Oriental topaz, and when violet Oriental amethyst. Clear, colourless crystals are known as white sapphire, and are very valuable. It is evident, therefore, that whosoever succeeds in making artificially clear crystals of white sapphire has the power, by introducing appropriate colouring matter, to make the Oriental ruby, sapphire, emerald, topaz and amethyst. All of these stones, even when of small size, are costly and readily saleable, while when they are of fine quality and large size they are highly prized, a ruby of fine colour, and free from flaws, a few carats in weight, being of more value than a diamond of the same weight.

This being the case, it is not surprising that repeated attempts have been made to effect the crystallization of alumina. This is not a matter of difficulty, but unfortunately the crystals generally form thin plates, of good colour, but too thin to be useful as gems. In 1837 M. A. A. Gaudin made true rubies, of microscopic size, by fusing alum in a carbon crucible at a very high temperature, and adding a little chromium as colouring matter. In 1847 J. J. Ebelmen produced the white sapphire and rose-coloured spinel by fusing the constituents at a high temperature in boracic acid. Shortly afterwards he produced the ruby by employing borax as the solvent. The boracic acid was found to be too volatile to allow the alumina to crystallize, but the use of borax made the necessary difference. But it was not till about the year 1877 that E. Frémy and C. Feil first published a method whereby it was possible to produce a crystallized alumina from which small stones could be cut. They first formed lead aluminate by the fusion together of lead oxide and alumina. This was kept in a state of fusion in a fireclay crucible (in the composition of which silica enters largely). Under the influence of the high temperature the silica of the crucible gradually decomposes the lead aluminate, forming lead silicate, which remains in the liquid state, and alumina, which crystallizes as white sapphire. By the admixture of 2 or 3% of a chromium compound with original materials the resulting white sapphire became ruby. More recently Edmond Frémy and A. Verneuil obtained artificial rubies by reacting at a red heat with barium fluoride on amorphous alumina containing a small quantity of chromium. The rubies obtained in this manner are thus described by Frémy and Verneuil: “Their crystalline form is regular; their lustre is adamantine; they present the beautiful colour of the ruby; they are perfectly transparent, have the hardness of the ruby, and easily scratch topaz. They resemble the natural ruby in becoming dark when heated, resuming their rose-colour on cooling.” Des Cloizeaux says of them that “under the microscope some of the crystals show bubbles. In converging polarized light the coloured rings and the negative black cross are of a remarkable regularity.”

Other experimentalists have attacked the problem in other directions. Besides those already mentioned, L. Eisner, H. H. De Senarmont, Sainte-Claire Deville, and H. Caron and H. Debray have succeeded with more or less success in producing rubies. The general plan adopted has been to form a mixture of salts fusible at a red heat, forming a liquid in which alumina will dissolve. Alumina is now added till the fused mass will take up no more, and the crucible is left in the furnace for a long time, sometimes extending over weeks. The solvent slowly volatilizes, and the alumina is deposited in crystals, coloured by whatever colouring oxide has been added.

Mention has been made above of a stone frequently substituted for the true ruby, called the “spinel” or “balas” ruby. The spinel and ruby occur together in nature, stones from Burma being as often spinel as true Oriental ruby. In the artificial production of the ruby it sometimes happens that spinel crystallizes out when true Oriental ruby is expected. The fusion bath is so arranged that only red-coloured alumina shall crystallize out, but it is difficult to have all the materials of such purity as to ensure the complete absence of silica and magnesia. In this case, when these impurities have accumulated to a certain point they unite with the alumina, and spinel then separates, as it crystallizes more easily than ruby. When all the magnesia and silica have been eliminated in this way the bath resumes its deposition of crystalline ruby. Rubies of fine colour and of considerable size have been shown in London, made on the Continent by a secret process. The writer has seen several cut stones so made weighing over a carat each, the uncut crystals measuring half an inch along a crystal edge, and weighing over 70 grains, and a clear plate of ruby cut from a single crystal weighing over 10 grains. Ruby has been made by Sir W. Roberts-Austen as a by-product in the production of metallic chromium. Oxide of chromium and aluminium powder are intimately mixed together in a refractory crucible, and the mixture is ignited at the upper part. The aluminium and chromium oxide react with evolution of so much heat that the reduced chromium is melted. Such is the intensity of the reaction that the resulting alumina is also completely fused, floating as a liquid on the molten chromium. Sometimes the alumina takes up the right amount of chromium to enable it to assume the ruby colour. On cooling the melted alumina crystallizes in large flakes, which on examination by transmitted light are seen to be true ruby. The development of the red colour is said by C. Greville-Williams only to take place at a white heat. It is not due to the presence of chromic acid, but to a reaction between alumina and chromic oxide, which requires an elevated temperature.

Artificially made but real rubies have been put on the market,