arc of France by P. F. A. Méchain and J. B. J. Delambre had for its end the determination of the true length of the “metre” which was to be the legal standard of length of France (see Earth, Figure of the).
The basis of every extensive survey is an accurate triangulation, and the operations of geodesy consist in the measurement, by theodolites, of the angles of the triangles; the measurement of one or more sides of these triangles on the ground; the determination by astronomical observations of the azimuth of the whole network of triangles; the determination of the actual position of the same on the surface of the earth by observations, first for latitude at some of the stations, and secondly for longitude; the determination of altitude for all stations.
For the computation, the points of the actual surface of the earth are imagined as projected along their plumb lines on the mathematical figure, which is given by the stationary sea-level, and the extension of the sea through the continents by a system of imaginary canals. For many purposes the mathematical surface is assumed to be a plane; in other cases a sphere of radius 6371 kilometres (20,900,000 ft.). In the case of extensive operations the surface must be considered as a compressed ellipsoid of rotation, whose minor axis coincides with the earth’s axis, and whose compression, flattening, or ellipticity is about 1/298.
Measurement of Base Lines.
To determine by actual measurement on the ground the length of a side of one of the triangles (“base line”), wherefrom to infer the lengths of all the other sides in the triangulation, is not the least difficult operation of a trigonometrical survey. When the problem is stated thus—To determine the number of times that a certain standard or unit of length is contained between two finely marked points on the surface of the earth at a distance of some miles asunder, so that the error of the result may be pronounced to lie between certain very narrow limits,—then the question demands very serious consideration. The representation of the unit of length by means of the distance between two fine lines on the surface of a bar of metal at a certain temperature is never itself free from uncertainty and probable error, owing to the difficulty of knowing at any moment the precise temperature of the bar; and the transference of this unit, or a multiple of it, to a measuring bar will be affected not only with errors of observation, but with errors arising from uncertainty of temperature of both bars. If the measuring bar be not self-compensating for temperature, its expansion must be determined by very careful experiments. The thermometers required for this purpose must be very carefully studied, and their errors of division and index error determined.
In order to avoid the difficulty in exactly determining the temperature of a bar by the mercury thermometer, F. W. Bessel introduced in 1834 near Königsberg a compound bar which constituted a metallic thermometer.[1] A zinc bar is laid on an iron bar two toises long, both bars being perfectly planed and in free contact, the zinc bar being slightly shorter and the two bars rigidly united at one end. As the temperature varies, the difference of the lengths of the bars, as perceived by the other end, also varies, and affords a quantitative correction for temperature variations, which is applied to reduce the length to standard temperature. During the measurement of the base line the bars were not allowed to come into contact, the interval being measured by the insertion of glass wedges. The results of the comparisons of four measuring rods with one another and with the standards were elaborately computed by the method of least-squares. The probable error of the measured length of 935 toises (about 6000 ft.) has been estimated as 1/863500 or 1.2 μ (μ denoting a millionth). With this apparatus fourteen base lines were measured in Prussia and some neighbouring states; in these cases a somewhat higher degree of accuracy was obtained.
The principal triangulation of Great Britain and Ireland has seven base lines: five have been measured by steel chains, and two, more exactly, by the compensation bars of General T. F. Colby, an apparatus introduced in 1827–1828 at Lough Foyle in Ireland. Ten base lines were measured in India in 1831–1869 by the same apparatus. This is a system of six compound-bars self-correcting for temperature. The bars may be thus described: Two bars, one of brass and the other of iron, are laid in parallelism side by side, firmly united at their centres, from which they may freely expand or contract; at the standard temperature they are of the same length. Let AB be one bar, A′B′ the other; draw lines through the corresponding extremities AA′ (to P) and BB′ (to Q), and make A′P = B′Q, AA′ being equal to BB′. If the ratio A′P/AP equals the ratio of the coefficients of expansion of the bars A′B′ and AB, then, obviously, the distance PQ is constant (or nearly so). In the actual instrument P and Q are finely engraved dots 10 ft. apart. In practice the bars, when aligned, are not in contact, an interval of 6 in. being allowed between each bar and its neighbour. This distance is accurately measured by an ingenious micrometrical arrangement constructed on exactly the same principle as the bars themselves.
The last base line measured in India had a length of 8913 ft. In consequence of some suspicion as to the accuracy of the compensation apparatus, the measurement was repeated four times, the operations being conducted so as to determine the actual values of the probable errors of the apparatus. The direction of the line (which is at Cape Comorin) is north and south. In two of the measurements the brass component was to the west, in the others to the east; the differences between the individual measurements and the mean of the four were +0.0017, −0.0049, −0.0015, +0.0045 ft. These differences are very small; an elaborate investigation of all sources of error shows that the probable error of a base line in India is on the average ±2.8 μ. These compensation bars were also used by Sir Thomas Maclear in the measurement of the base line in his extension of Lacaille’s arc at the Cape. The account of this operation will be found in a volume entitled Verification and Extension of Lacaille’s Arc of Meridian at the Cape of Good Hope, by Sir Thomas Maclear, published in 1866. A rediscussion has been given by Sir David Gill in his Report on the Geodetic Survey of South Africa, &c., 1896.
A very simple base apparatus was employed by W. Struve in his triangulations in Russia from 1817 to 1855. This consisted of four wrought-iron bars, each two toises (rather more than 13 ft.) long; one end of each bar is terminated in a small steel cylinder presenting a slightly convex surface for contact, the other end carries a contact lever rigidly connected with the bar. The shorter arm of the lever terminates below in a polished hemisphere, the upper and longer arm traversing a vertical divided arc. In measuring, the plane end of one bar is brought into contact with the short arm of the contact lever (pushed forward by a weak spring) of the next bar. Each bar has two thermometers, and a level for determining the inclination of the bar in measuring. The manner of transferring the end of a bar to the ground is simply this: under the end of the bar a stake is driven very firmly into the ground, carrying on its upper surface a disk, capable of movement in the direction of the measured line by means of slow-motion screws. A fine mark on this disk is brought vertically under the end of the bar by means of a theodolite which is planted at a distance of 25 ft. from the stake in a direction perpendicular to the base. Struve investigated for each base the probable errors of the measurement arising from each of these seven causes: Alignment, inclination, comparisons with standards, readings of index, personal errors, uncertainties of temperature, and the probable errors of adopted rates of expansion. He found that ±0.8 μ was the mean of the probable errors of the seven bases measured by him. The Austro-Hungarian apparatus is similar; the distance of the rods is measured by a slider, which rests on one of the ends of each rod. Twenty-two base lines were measured in 1840–1899.
General Carlos Ibañez employed in 1858–1879, for the measurement of nine base lines in Spain, two apparatus similar to the apparatus previously employed by Porro in Italy; one is complicated, the other simplified. The first, an apparatus of the brothers Brunner of Paris, was a thermometric combination of two bars, one of platinum and one of brass, in length 4 metres, furnished with three levels and four thermometers. Suppose A, B, C three micrometer microscopes very firmly supported at intervals of 4 metres with their axes vertical, and aligned in the plane of the base line by means of a transit instrument, their micrometer screws being in the line of measurement. The measuring bar is brought under say A and B, and those micrometers read; the bar is then shifted and brought under B and C. By repetition of this process, the reading of a micrometer indicating the end of each position of the bar, the measurement is made.
Quite similar apparatus (among others) has been employed by the French and Germans. Since, however, it only permitted a distance of about 300 m. to be measured daily, Ibañez introduced a simplification; the measuring rod being made simply of steel, and provided with inlaid mercury thermometers. This apparatus was used in Switzerland for the measurement of three base lines. The accuracy is shown by the estimated probable errors: ±0.2 μ to ±0.8 μ. The distance measured daily amounts at least to 800 m.
A greater daily distance can be measured with the same accuracy by means of Bessel’s apparatus; this permits the ready measurement of 2000 m. daily. For this, however, it is important to notice that a large staff and favourable ground are necessary. An important improvement was introduced by Edward Jäderin of Stockholm, who measures with stretched wires of about 24 metres long; these wires are about 1.65 mm. in diameter, and when in use are stretched by an accurate spring balance with a tension of 10 kg.[2] The nature of the ground has a very trifling effect on this method. The difficulty of temperature determinations is removed by employing wires made of invar, an alloy of steel (64%) and nickel (36%) which has practically no linear expansion for small thermal changes