number of measures of an angle is never less than 20. An examination of 1407 angles showed that the probable error of an observed angle is on the average ±0″.28.
For the observations of very distant stations it is usual to employ a heliotrope (from the Gr. ἥλιος, sun; τρόπος, a turn), invented by Gauss at Göttingen in 1821. In its simplest form this is a plane mirror, 4, 6, or 8 in. in diameter, capable of rotation round a horizontal and a vertical axis. This mirror is placed at the station to be observed, and in fine weather it is kept so directed that the rays of the sun reflected by it strike the distant observing telescope. To the observer the heliotrope presents the appearance of a star of the first or second magnitude, and is generally a pleasant object for observing.
Observations at night, with the aid of light-signals, have been repeatedly made, and with good results, particularly in France by General François Perrier, and more recently in the United States by the Coast and Geodetic Survey; the signal employed being an acetylene bicycle-lamp, with a lens 5 in. in diameter. Particularly noteworthy are the trigonometrical connexions of Spain and Algeria, which were carried out in 1879 by Generals Ibañez and Perrier (over a distance of 270 km.), of Sicily and Malta in 1900, and of the islands of Elba and Sardinia in 1902 by Dr Guarducci (over distances up to 230 km.); in these cases artificial light was employed: in the first case electric light and in the two others acetylene lamps.
The direction of the meridian is determined either by a theodolite or a portable transit instrument. In the former case the operation consists in observing the angle between a terrestrial object—generally a mark specially erected and capable of illumination at night—and a close circumpolar star at its greatest eastern or western azimuth, or, at any rate, when very near that position. If the observation be made t minutes of time before or after the time of greatest azimuth, the azimuth then will differ from its maximum value by (450t)² sin 1″ sin 2δ/sin z, in seconds of angle, omitting smaller terms, δ being the star’s declination and z its zenith distance. The collimation and level errors are very carefully determined before and after these observations, and it is usual to arrange the observations by the reversal of the telescope so that collimation error shall disappear. If b, c be the level and collimation errors, the correction to the circle reading is b cot z ± c cosec z, b being positive when the west end of the axis is high. It is clear that any uncertainty as to the real state of the level will produce a corresponding uncertainty in the resulting value of the azimuth,—an uncertainty which increases with the latitude and is very large in high latitudes. This may be partly remedied by observing in connexion with the star its reflection in mercury. In determining the value of “one division” of a level tube, it is necessary to bear in mind that in some the value varies considerably with the temperature. By experiments on the level of Ramsden’s 3-foot theodolite, it was found that though at the ordinary temperature of 66° the value of a division was about one second, yet at 32° it was about five seconds.
In a very excellent portable transit used on the Ordnance Survey, the uprights carrying the telescope are constructed of mahogany, each upright being built of several pieces glued and screwed together; the base, which is a solid and heavy plate of iron, carries a reversing apparatus for lifting the telescope out of its bearings, reversing it and letting it down again. Thus is avoided the change of temperature which the telescope would incur by being lifted by the hands of the observer. Another form of transit is the German diagonal form, in which the rays of light after passing through the object-glass are turned by a total reflection prism through one of the transverse arms of the telescope, at the extremity of which arm is the eye-piece. The unused half of the ordinary telescope being cut away is replaced by a counterpoise. In this instrument there is the advantage that the observer without moving the position of his eye commands the whole meridian, and that the level may remain on the pivots whatever be the elevation of the telescope. But there is the disadvantage that the flexure of the transverse axis causes a variable collimation error depending on the zenith distance of the star to which it is directed; and moreover it has been found that in some cases the personal error of an observer is not the same in the two positions of the telescope.
To determine the direction of the meridian, it is well to erect two marks at nearly equal angular distances on either side of the north meridian line, so that the pole star crosses the vertical of each mark a short time before and after attaining its greatest eastern and western azimuths.
Fig. 3. |
If now the instrument, perfectly levelled, is adjusted to have its centre wire on one of the marks, then when elevated to the star, the star will traverse the wire, and its exact position in the field at any moment can be measured by the micrometer wire. Alternate observations of the star and the terrestrial mark, combined with careful level readings and reversals of the instrument, will enable one, even with only one mark, to determine the direction of the meridian in the course of an hour with a probable error of less than a second. The second mark enables one to complete the station more rapidly and gives a check upon the work. As an instance, at Findlay Seat, in latitude 57° 35′, the resulting azimuths of the two marks were 177° 45′ 37″.29 ± 0″.20 and 182° 17′ 15″.61 ± 0″.13, while the angle between the two marks directly measured by a theodolite was found to be 4° 31′ 37″.43 ± 0″.23.
We now come to the consideration of the determination of time with the transit instrument. Let fig. 3 represent the sphere stereographically projected on the plane of the horizon,—ns being the meridian, we the prime vertical, Z, P the zenith and the pole. Let p be the point in which the production of the axis of the instrument meets the celestial sphere, S the position of a star when observed on a wire whose distance from the collimation centre is c. Let a be the azimuthal deviation, namely, the angle wZp, b the level error so that Zp = 90° − b. Let also the hour angle corresponding to p be 90° − n, and the declination of the same = m, the star’s declination being δ, and the latitude φ. Then to find the hour angle ZPS = τ of the star when observed, in the triangles pPS, pPZ we have, since pPS = 90 + τ − n,
−Sin c= sin m sin δ + cos m cos δ sin (n − τ), Sin m = sin b sin φ − cos b cos φ sin a, Cos m sin n = sin b cos φ + cos b sin φ sin a. |
And these equations solve the problem, however large be the errors of the instrument. Supposing, as usual, a, b, m, n to be small, we have at once τ = n + c sec δ + m tan δ, which is the correction to the observed time of transit. Or, eliminating m and n by means of the second and third equations, and putting z for the zenith distance of the star, t for the observed time of transit, the corrected time is t + (a sin z + b cos z + c) / cos δ. Another very convenient form for stars near the zenith is τ = b sec φ + c sec δ + m (tan δ − tan φ).
Suppose that in commencing to observe at a station the error of the chronometer is not known; then having secured for the instrument a very solid foundation, removed as far as possible level and collimation errors, and placed it by estimation nearly in the meridian, let two stars differing considerably in declination be observed—the instrument not being reversed between them. From these two stars, neither of which should be a close circumpolar star, a good approximation to the chronometer error can be obtained; thus