Page:EB1911 - Volume 11.djvu/639

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
GEOFFROY SAINT-HILAIRE, I.—GEOGRAPHY
619

In 1798 Geoffroy was chosen a member of the great scientific expedition to Egypt, and on the capitulation of Alexandria in August 1801, he took part in resisting the claim made by the British general to the collections of the expedition, declaring that, were that demand persisted in, history would have to record that he also had burnt a library in Alexandria. Early in January 1802 Geoffroy returned to his accustomed labours in Paris. He was elected a member of the academy of sciences of that city in September 1807. In March of the following year the emperor, who had already recognized his national services by the award of the cross of the legion of honour, selected him to visit the museums of Portugal, for the purpose of procuring collections from them, and in the face of considerable opposition from the British he eventually was successful in retaining them as a permanent possession for his country. In 1809, the year after his return to France, he was made professor of zoology at the faculty of sciences at Paris, and from that period he devoted himself more exclusively than before to anatomical study. In 1818 he gave to the world the first part of his celebrated Philosophie anatomique, the second volume of which, published in 1822, and subsequent memoirs account for the formation of monstrosities on the principle of arrest of development, and of the attraction of similar parts. When, in 1830, Geoffroy proceeded to apply to the invertebrata his views as to the unity of animal composition, he found a vigorous opponent in Georges Cuvier, and the discussion between them, continued up to the time of the death of the latter, soon attracted the attention of the scientific throughout Europe. Geoffroy, a synthesist, contended, in accordance with his theory of unity of plan in organic composition, that all animals are formed of the same elements, in the same number, and with the same connexions: homologous parts, however they differ in form and size, must remain associated in the same invariable order. With Goethe he held that there is in nature a law of compensation or balancing of growth, so that if one organ take on an excess of development, it is at the expense of some other part; and he maintained that, since nature takes no sudden leaps, even organs which are superfluous in any given species, if they have played an important part in other species of the same family, are retained as rudiments, which testify to the permanence of the general plan of creation. It was his conviction that, owing to the conditions of life, the same forms had not been perpetuated since the origin of all things, although it was not his belief that existing species are becoming modified. Cuvier, who was an analytical observer of facts, admitted only the prevalence of “laws of co-existence” or “harmony” in animal organs, and maintained the absolute invariability of species, which he declared had been created with a regard to the circumstances in which they were placed, each organ contrived with a view to the function it had to fulfil, thus putting, in Geoffroy’s considerations, the effect for the cause.

In July 1840 Geoffroy became blind, and some months later he had a paralytic attack. From that time his strength gradually failed him. He resigned his chair at the museum in 1841, and died at Paris on the 19th of June 1844.

Geoffroy wrote: Catalogue des mammifères du Muséum National d’Histoire Naturelle (1813), not quite completed; Philosophie anatomique—t. i., Des organes respiratoires (1818), and t. ii., Des monstruosités humaines (1822); Système dentaire des mammifères et des oiseaux (1st pt., 1824); Sur le principe de l’unité de composition organique (1828); Cours de l’histoire naturelle des mammifères (1829); Principes de philosophie zoologique (1830); Études progressives d’un naturaliste (1835); Fragments biographiques (1832); Notions synthétiques, historiques et physiologiques de philosophie naturelle (1838), and other works; also part of the Description de l’Égypte par la commission des sciences (1821–1830); and, with Frédéric Cuvier (1773–1838), a younger brother of G. Cuvier, Histoire naturelle des mammifères (4 vols., 1820–1842); besides numerous papers on such subjects as the anatomy of marsupials, ruminants and electrical fishes, the vertebrate theory of the skull, the opercula of fishes, teratology, palaeontology and the influence of surrounding conditions in modifying animal forms.

See Vie, travaux, et doctrine scientifique d’Étienne Geoffroy Saint-Hilaire, par son fils M. Isidore Geoffroy Saint-Hilaire (Paris and Strasburg, 1847), to which is appended a list of Geoffroy’s works; and Joly, in Biog. universelle, t. xvi. (1856).


GEOFFROY SAINT-HILAIRE, ISIDORE (1805–1861), French zoologist, son of the preceding, was born at Paris on the 16th of December 1805. In his earlier years he showed an aptitude for mathematics, but eventually he devoted himself to the study of natural history and of medicine, and in 1824 he was appointed assistant naturalist to his father. On the occasion of his taking the degree of doctor of medicine in September 1829, he read a thesis entitled Propositions sur la monstruosité, considérée chez l’homme et les animaux; and in 1832–1837 was published his great teratological work, Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux, 3 vols. 8vo. with 20 plates. In 1829 he delivered for his father the second part of a course of lectures on ornithology, and during the three following years he taught zoology at the Athénée, and teratology at the École pratique. He was elected a member of the academy of sciences at Paris in 1833, was in 1837 appointed to act as deputy for his father at the faculty of sciences in Paris, and in the following year was sent to Bordeaux to organize a similar faculty there. He became successively inspector of the academy of Paris (1840), professor of the museum on the retirement of his father (1841), inspector-general of the university (1844), a member of the royal council for public instruction (1845), and on the death of H. M. D. de Blainville, professor of zoology at the faculty of sciences (1850). In 1854 he founded the Acclimatization Society of Paris, of which he was president. He died at Paris on the 10th of November 1861.

Besides the above-mentioned works, he wrote: Essais de zoologie générale (1841); Vie . . . d’Étienne Geoffroy Saint-Hilaire (1847); Acclimatation et domestication des animaux utiles (1849; 4th ed., 1861); Lettres sur les substances alimentaires et particulièrement sur la viande de cheval (1856); and Histoire naturelle générale des règnes organiques (3 vols., 1854–1862), which was not quite completed. He was the author also of various papers on zoology, comparative anatomy and palaeontology.


GEOGRAPHY (Gr. γῆ, earth, and γράφειν, to write), the exact and organized knowledge of the distribution of phenomena on the surface of the earth. The fundamental basis of geography is the vertical relief of the earth’s crust, which controls all mobile distributions. The grander features of the relief of the lithosphere or stony crust of the earth control the distribution of the hydrosphere or collected waters which gather into the hollows, filling them up to a height corresponding to the volume, and thus producing the important practical division of the surface into land and water. The distribution of the mass of the atmosphere over the surface of the earth is also controlled by the relief of the crust, its greater or lesser density at the surface corresponding to the lesser or greater elevation of the surface. The simplicity of the zonal distribution of solar energy on the earth’s surface, which would characterize a uniform globe, is entirely destroyed by the dissimilar action of land and water with regard to radiant heat, and by the influence of crust-forms on the direction of the resulting circulation. The influence of physical environment becomes clearer and stronger when the distribution of plant and animal life is considered, and if it is less distinct in the case of man, the reason is found in the modifications of environment consciously produced by human effort. Geography is a synthetic science, dependent for the data with which it deals on the results of specialized sciences such as astronomy, geology, oceanography, meteorology, biology and anthropology, as well as on topographical description. The physical and natural sciences are concerned in geography only so far as they deal with the forms of the earth’s surface, or as regards the distribution of phenomena. The distinctive task of geography as a science is to investigate the control exercised by the crust-forms directly or indirectly upon the various mobile distributions. This gives to it unity and definiteness, and renders superfluous the attempts that have been made from time to time to define the limits which divide geography from geology on the one hand and from history on the other. It is essential to classify the subject-matter of geography in such a manner as to give prominence not only to facts, but to their mutual relations and their natural and inevitable order.

The fundamental conception of geography is form, including