Page:EB1911 - Volume 11.djvu/650

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
630   
GEOGRAPHY
[PRINCIPLES


that of Paris, founded in 1825 under the title of La Société de Géographie. The Berlin Geographical Society (Gesellschaft für Erdkunde) is second in order of seniority, having been founded in 1827. The Royal Geographical Society, which was founded in London in 1830, comes third on the list; but it may be viewed as a direct result of the earlier African Association founded in 1788. Sir John Barrow, Sir John Cam Hobhouse (Lord Broughton), Sir Roderick Murchison, Mr Robert Brown and Mr Bartle Frere formed the foundation committee of the Royal Geographical Society, and the first president was Lord Goderich. The action of the society in supplying practical instruction to intending travellers, in astronomy, surveying and the various branches of science useful to collectors, has had much to do with advancement of discovery. Since the war of 1870 many geographical societies have been established on the continent of Europe. At the close of the 19th century there were upwards of 100 such societies in the world, with more than 50,000 members, and over 150 journals were devoted entirely to geographical subjects.[1] The great development of photography has been a notable aid to explorers, not only by placing at their disposal a faithful and ready means of recording the features of a country and the types of inhabitants, but by supplying a method of quick and accurate topographical surveying.

The Principles of Geography

As regards the scope of geography, the order of the various departments and their inter-relation, there is little difference of opinion, and the principles of geography[2] are now generally accepted by modern geographers. The order in which the various subjects are treated in the following sketch is the natural succession from fundamental to dependent facts, which corresponds also to the evolution of the diversities of the earth’s crust and of its inhabitants.

The fundamental geographical conceptions are mathematical, the relations of space and form. The figure and dimensions of the earth are the first of these. They are ascertained by a combination of actual measurement of the highest precision on the surface and{ angular observations of theMathematical geography. positions of the heavenly bodies. The science of geodesy is part of mathematical geography, of which the arts of surveying and cartography are applications. The motions of the earth as a planet must be taken into account, as they render possible the determination of position and direction by observations of the heavenly bodies. The diurnal rotation of the earth furnishes two fixed points or poles, the axis joining which is fixed or nearly so in its direction in space. The rotation of the earth thus fixes the directions of north and south and defines those of east and west. The angle which the earth’s axis makes with the plane in which the planet revolves round the sun determines the varying seasonal distribution of solar radiation over the surface and the mathematical zones of climate. Another important consequence of rotation is the deviation produced in moving bodies relatively to the surface. In the form known as Ferrell’s Law this runs: “If a body moves in any direction on the earth’s surface, there is a deflecting force which arises from the earth’s rotation which tends to deflect it to the right in the northern hemisphere but to the left in the southern hemisphere.” The deviation is of importance in the movement of air, of ocean currents, and to some extent of rivers.[3]

In popular usage the words “physical geography” have come to mean geography viewed from a particular standpoint rather than any special department of the subject. The popular meaning is better conveyed by the word physiography, a term which appears to have beenPhysical geography. introduced by Linnaeus, and was reinvented as a substitute for the cosmography of the middle ages by Professor Huxley. Although the term has since been limited by some writers to one particular part of the subject, it seems best to maintain the original and literal meaning. In the stricter sense, physical geography is that part of geography which involves the processes of contemporary change in the crust and the circulation of the fluid envelopes. It thus draws upon physics for the explanation of the phenomena with the space-relations of which it is specially concerned. Physical geography naturally falls into three divisions, dealing respectively with the surface of the lithosphere—geomorphology; the hydrosphere—oceanography; and the atmosphere—climatology. All these rest upon the facts of mathematical geography, and the three are so closely inter-related that they cannot be rigidly separated in any discussion.

Geomorphology is the part of geography which deals with terrestrial relief, including the submarine as well as the subaërial portions of the crust. The history of the origin of the various forms belongs to geology, and can be completely studied only by geological methods. But the relief of the crustGeomorph-
ology.
is not a finished piece of sculpture; the forms are for the most part transitional, owing their characteristic outlines to the process by which they are produced; therefore the geographer must, for strictly geographical purposes, take some account of the processes which are now in action modifying the forms of the crust. Opinion still differs as to the extent to which the geographer’s work should overlap that of the geologist.

The primary distinction of the forms of the crust is that between elevations and depressions. Granting that the geoid or mean surface of the ocean is a uniform spheroid, the distribution of land and water approximately indicates a division of the surface of the globe into two areas, one of elevation and one of depression. The increasing number of measurements of the height of land in all continents and islands, and the very detailed levellings in those countries which have been thoroughly surveyed, enable the average elevation of the land above sea-level to be fairly estimated, although many vast gaps in accurate knowledge remain, and the estimate is not an exact one. The only part of the sea-bed the configuration of which is at all well known is the zone bordering the coasts where the depth is less than about 100 fathoms or 200 metres, i.e. those parts which sailors speak of as “in soundings.” Actual or projected routes for telegraph cables across the deep sea have also been sounded with extreme accuracy in many cases; but beyond these lines of sounding the vast spaces of the ocean remain unplumbed save for the rare researches of scientific expeditions, such as those of the “Challenger,” the “Valdivia,” the “Albatross” and the “Scotia.” Thus the best approximation to the average depth of the ocean is little more than an expert guess; yet a fair approximation is probable for the features of sub-oceanic relief are so much more uniform than those of the land that a smaller number of fixed points is required to determine them.

The chief element of uncertainty as to the largest features of the relief of the earth’s crust is due to the unexplored area in the Arctic region and the larger regions of the Antarctic, of which we know nothing. We know that the earth’s surface if unveiled of water would exhibitCrustal relief. a great region of elevation arranged with a certain rough radiate symmetry round the north pole, and extending southwards in three unequal arms which taper to points in the south. A depression surrounds the little-known south polar region in a continuous ring and extends northwards in three vast hollows lying between the arms of the elevated area. So far only is it possible to speak with certainty, but it is permissible to take a few steps into the twilight of dawning knowledge and indicate the chief subdivisions which are likely to be established in the great crust-hollow and the great crust-heap. The boundary between these should obviously be the mean surface of the sphere.

Sir John Murray deduced the mean height of the land of the globe as about 2250 ft. above sea-level, and the mean depth of the oceans as 2080 fathoms or 12,480 ft. below sea-level.[4] Calculating the area of the land at 55,000,000 sq. m. (or 28.6% of the surface), and that of the oceans as 137,200,000 sq. m. (or 71.4% of the surface), he found that the volume of the land above sea-level was 23,450,000 cub. m., the volume of water below sea-level 323,800,000, and the total volume of the water equal to about 1/666th of the volume of the whole globe. From these data, as revised by A. Supan,[5] H. R. Mill calculated the position of mean sphere-level at about 10,000 ft. or 1700 fathoms below sea-level. He showed that an imaginary spheroidal shell, concentric with the earth and cutting the slope between the elevated and depressed areas at the contour-line of 1700 fathoms, would not only leave above it a volume of the crust equal to the volume of the hollow left below it, but would also divide the surface of the earth so that the area of the elevated region was equal to that of the depressed region.[6]

A similar observation was made almost simultaneously by Romieux,[7] who further speculated on the equilibrium between the weight of the elevated land mass and that of the total waters of the ocean, and deduced some interesting relations between them. Murray, as the result of his study,Areas of the crust accord-ing to Murray. divided the earth’s surface into three zones—the continental area containing all dry land, the transitional area including the submarine slopes down to 1000 fathoms, and the abysmal area consisting of the floor of the ocean beyond that depth; and Mill proposed to take the line of mean-sphere level, instead of the empirical depth of 1000 fathoms, as the boundary between the transitional and abysmal areas.

An elaborate criticism of all the existing data regarding the volume relations of the vertical relief of the globe was made in

1894 by Professor Hermann Wagner, whose recalculations of volumes

  1. H. Wagner’s year-book, Geographische Jahrbuch, published at Gotha, is the best systematic record of the progress of geography in all departments; and Haack’s Geographen Kalender, also published annually at Gotha, gives complete lists of the geographical societies and geographers of the world.
  2. This phrase is old, appearing in one of the earliest English works on geography, William Cuningham’s Cosmographical Glasse conteinyng the pleasant Principles of Cosmographie, Geographie, Hydrographie or Navigation (London, 1559).
  3. See also S. Günther, Handbuch der mathematischen Geographie (Stuttgart, 1890).
  4. “On the Height of the Land and the Depth of the Ocean,” Scot. Geog. Mag. iv. (1888), p. 1. Estimates had been made previously by Humboldt, De Lapparent, H. Wagner, and subsequently by Penck and Heiderich, and for the oceans by Karstens.
  5. Petermanns Mitteilungen, xxv. (1889), p. 17.
  6. Proc. Roy. Soc. Edin. xvii. (1890) p. 185.
  7. Comptes rendus Acad. Sci. (Paris, 1890), vol. iii. p. 994.