as had happened at Lipari. These crude conceptions of the nature
of volcanic action, and the cause of earthquakes, continued to prevail
for many centuries. They are repeated by Lucretius, who, however,
following Anaximenes, includes as one of the causes of earthquakes
the fall of mountainous masses of rock undermined by time, and the
consequent propagation of gigantic tremors far and wide through
the earth. Strabo, having travelled through the volcanic districts
of Italy, was able to recognize that Vesuvius had once been an
active volcano, although no eruption had taken place from it within
human memory. He continued to hold the belief that volcanic
energy arose from the movement of subterranean wind. He believed
that the district around the Strait of Messina, which had formerly
suffered from destructive earthquakes, was seldom visited by them
after the volcanic vents of that region had been opened, so as to
provide an escape for the subterranean fire, wind, water and burning
masses. He cites in his Geography a number of examples of widespread
as well as local sinkings of land, and alludes also to the uprise
of the sea-bottom. He likewise regards some islands as having been
thrown up by volcanic agency, and others as torn from the mainland
by such convulsions as earthquakes.
The most detailed account of earthquake phenomena which has come down to us from antiquity is that of Seneca in his Quaestiones Naturales. This philosopher had been much interested in the accounts given him by survivors and witnesses of the earthquake which convulsed the district of Naples in February A.D. 63. He distinguished several distinct movements of the ground: 1st, the up and down motion (succussio); 2nd, the oscillatory motion (inclinatio); and probably a third, that of trembling or vibration. While admitting that some earthquakes may arise from the collapse of the walls of subterranean cavities, he adhered to the old idea, held by the most numerous and important previous writers, that these commotions are caused mainly by the movements of wind imprisoned within the earth. As to the origin of volcanic outbursts he supposed that the subterranean wind in struggling for an outlet, and whirling through the chasms and passages, meets with great store of sulphur and other combustible substances, which by mere friction are set on fire. The elder Pliny reiterates the commonly accepted opinion as to the efficacy of wind underground. In discussing the phenomena of earthquakes he remarks that towns with many culverts and houses with cellars suffer less than others, and that at Naples those houses are most shaken which stand on hard ground. It thus appears that with regard to subterranean geological operations, no advance was made during the time of the Greeks and Romans as to the theoretical explanation of these phenomena; but a considerable body of facts was collected, especially as to the effects of earthquakes and the occurrence of volcanic eruptions.
The superficial processes of geology, being much less striking than those of subterranean energy, naturally attracted less attention in antiquity. The operations of rivers, however, which so intimately affect a human population, were watched with more or less care. Herodotus, struck by the amount of Action of rivers. alluvial silt brought down annually by the Nile and spread over the flat inundated land, inferred that “Egypt is the gift of the river.” Aristotle, in discussing some of the features of rivers, displays considerable acquaintance with the various drainage-systems on the north side of the Mediterranean basin. He refers to the mountains as condensers of the atmospheric moisture, and shows that the largest rivers rise among the loftiest high grounds. He shows how sensibly the alluvial deposits carried down to the sea increase the breadth of the land, and cites some parts of the shores of the Black Sea, where, in sixty years, the rivers had brought down such a quantity of material that the vessels then in use required to be of much smaller draught than previously, the water shallowing so much that the marshy ground would, in course of time, become dry land. Strabo supplies further interesting information as to the work of rivers in making their alluvial plains and in pushing their deltas seaward. He remarks that these deltas are prevented from advancing farther outward by the ebb and flow of the tides.
2. Past Processes.—The abundant well-preserved marine shells exposed among the upraised Tertiary and post-Tertiary deposits in the countries bordering the Mediterranean are not infrequently alluded to in Greek and Latin literature. Xenophanes of Colophon (614 B.C.) noticed the occurrence Occurrences of fossils. of shells and other marine productions inland among the mountains, and inferred from them that the land had risen out of the sea. A similar conclusion was drawn by Xanthus the Lydian (464 B.C.) from shells like scallops and cockles, which were found far from the sea in Armenia and Lower Phrygia. Herodotus, Eratosthenes, Strato and Strabo noted the vast quantities of fossil shells in different parts of Egypt, together with beds of salt, as evidence that the sea had once spread over the country. But by far the most philosophical opinions on the past mutations of the earth’s surface are those expressed by Aristotle in the treatise already cited. Reviewing the evidence of these changes, he recognized that the sea now covers tracts that were once dry land, and that land will one day reappear where there is now sea. These alternations are to be regarded as following each other in a certain order and periodicity. But they are apt to escape our notice because they require successive periods of time, which, compared with our brief existence, are of enormous duration, and because they are brought about so imperceptibly that we fail to detect them in progress. In a celebrated passage in his Metamorphoses, Ovid puts into the mouth of the philosopher Pythagoras an account of what was probably regarded as the Pythagorean view of the subject in the Augustan age. It affirms the interchange of land and sea, the erosion of valleys by descending rivers, the washing down of mountains into the sea, the disappearance of the rivers and the submergence of land by earthquake movements, the separation of some islands from, and the union of others with, the mainland, the uprise of hills by volcanic action, the rise and extinction of burning mountains. There was a time before Etna began to glow, and the time is coming when the mountain will cease to burn.
From this brief sketch it will be seen that while the ancients had accumulated a good deal of information regarding the occurrence of geological changes, their interpretations of the phenomena were to a considerable extent mere fanciful speculation. They had acquired only a most imperfect conception of the nature and operation of the geological processes; and though many writers realized that the surface of the earth has not always been, and will not always remain, as it is now, they had no glimpse of the vast succession of changes of that surface which have been revealed by geology. They built hypotheses on the slenderest basis of fact, and did not realize the necessity of testing or verifying them.
Progress of Geological Conceptions in the Middle Ages.—During the centuries that succeeded the fall of the Western empire little progress was made in natural science. The schoolmen in the monasteries and other seminaries were content to take their science from the literature of Greece and Rome. The Arabs, however, not only collected and translated that literature, but in some departments made original observations themselves. To one of the most illustrious of their number, Avicenna, the translator of Aristotle, a treatise has been ascribed, in which singularly modern ideas are expressed regarding mountains, some of which are there stated to have been produced by an uplifting of the ground, while others have been left prominent, owing to the wearing away of the softer rocks around them. In either case, it is confessed that the process would demand long tracts of time for its completion.
After the revival of learning the ancient problem presented by fossil shells imbedded in the rocks of the interior of many countries received renewed attention. But the conditions for its solution were no longer what they had been in the days of the philosophers of antiquity. Men were not now free to adopt and teach any doctrine they pleased on the subject. The Christian church had meanwhile arisen to power all over Europe, and adjudged as heretics all who ventured to impugn any of her dogmas. She taught that the land and the sea had been separated on the third day of creation, before the appearance of any animal life, which was not created until the fifth day. To assert that the dry land is made up in great part of rocks that were formed in the sea, and are crowded with the remains of animals, was plainly to impugn the veracity of the Bible. Again, it had come to be the orthodox belief that only somewhere about 6000 years had elapsed since the time of Adam and Eve. If any thoughtful observer, impressed with the overwhelming force of the evidence that the fossiliferous formations of the earth’s crust must have taken long periods of time for their accumulation, ventured to give public expression to his conviction, he ran considerable risk of being proceeded against as a heretic. It was needful, therefore, to find some explanation of the facts of nature, which would not run counter to the ecclesiastical system of the day. Various such interpretations were proposed, doubtless in an honest endeavour at reconciliation. Three of these deserve special notice: (1) Many able observers and diligent collectors of fossils persuaded themselves that these objects never belonged to organisms of any kind, but should be regarded as mere “freaks of nature,” having no more connexion with any once living creature than the frost patterns on a window. They were styled “formed” or “figured” stones, “lapides sui generis,” and were asserted to be due to some inorganic imitative process within the earth or to the influence of the stars. (2) Observers who could not resist the evidence of their senses that the fossil shells once belonged to living animals, and who, at the same time, felt the necessity of accounting for the presence of marine organisms in the rocks of which the dry land is largely built up, sought a way out of the difficulty by invoking the Deluge of Noah. Here was a catastrophe which, they said, extended over the whole globe, and by which the entire dry land was submerged even up to the tops of the high hills. True, it only lasted one hundred and fifty days, but so little were the facts then appreciated that no difficulty seems to have been generally felt in crowding the accumulation of the thousands of feet of fossiliferous formations into that brief space of time. (3) Some more intelligent men in Italy, recognizing that these interpretations could not be upheld, fell back upon the idea that the rocks in which fossil shells are imbedded might have been heaped up by repeated and vigorous eruptions from volcanic centres. Certain modern eruptions in the Aegean Sea and in the Bay of Naples had drawn attention to the rapidity with which hills of considerable size could be piled around an active crater. It was argued that if Monte Nuovo near Naples could have been accumulated to a height of nearly 500 ft. in two days, there seemed to be no reason against believing that, during the time of the Flood, and in the course of the