Jump to content

Page:EB1911 - Volume 12.djvu/785

From Wikisource
This page has been proofread, but needs to be validated.
760
GYMNOSPERMS


cones, 1 to 2 ft. in length, of the sugar pine of California (Pinus Lambertiana) and other species. Smaller cones, less than an inch long, occur in the larch, Athrotaxis (Tasmania), Fitzroya (Patagonia and Tasmania), &c. In the Taxodieae and Araucarieae the cones are similar in appearance to those of the Abietineae, but they differ in the fact that the scales appear to be single, even in the young condition; each cone-scale in a genus of the Taxodiinae (Sequoia, &c.) bears several seeds, while in the Araucariinae (Araucaria and Agathis) each scale has one seed. The Cupressineae have cones composed of a few scales arranged in alternate whorls; each scale bears two or more seeds, and shows no external sign of being composed of two distinct portions. In the junipers the scales become fleshy as the seeds ripen, and the individual scales fuse together in the form of a berry. The female flowers of the Taxaceae assume another form; in Microcachrys (Tasmania) the reproductive structures are spirally disposed, and form small globular cones made up of red fleshy scales, to each of which is attached a single ovule enclosed by an integument and partially invested by an arillus; in Dacrydium the carpellary leaves are very similar to the foliage leaves—each bears one ovule with two integuments, the outer of which constitutes an arillus. Finally in the yew, as a type of the family Taxeae, the ovules occur singly at the apex of a lateral branch, enclosed when ripe by a conspicuous red or yellow fleshy arillus, which serves as an attraction to animals, and thus aids in the dispersal of the seeds.

(C and D after Worsdell.)
Fig. 15.—Diagrammatic treatment of:

A, Double needle of Sciadopitys (a, a, leaves; b, shoot; Br, bract).

B, seminiferous scale as leaf of axillary shoot (b, shoot; Sc, seminiferous scale; Br, bract).

C, seminiferous scale as fused pair of leaves (l1, l2, l3, first, second and third leaves; b, shoot; Br, bract).

D, cone-scale of Araucaria (n, nucellus; i, integument; x, xylem).

It is important to draw attention to some structural features exhibited by certain cone-scales, in which there is no external sign indicative of the presence of a carpellary and a seminiferous scale. In Araucaria Cookii and some allied species each Morphology of female flower. scale has a small pointed projection from its upper face near the distal end; the scales of Cunninghamia (China) are characterized by a somewhat ragged membranous projection extending across the upper face between the seeds and the distal end of the scale; in the scales of Athrotaxis (Tasmania) a prominent rounded ridge occupies a corresponding position. These projections and ridges may be homologous with the seminiferous scale of the pines, firs, cedars, &c. The simplest interpretation of the cone of the Abietineae is that which regards it as a flower consisting of an axis bearing several open carpels, which in the adult cone may be large and prominent or very small, the scale bearing the ovules being regarded as a placental outgrowth from the flat and open carpel. In Araucaria the cone-scale is regarded as consisting of a flat carpel, of which the placenta has not grown out into the scale-like structure. The seminiferous scale of Pinus, &c., is also spoken of sometimes as a ligular outgrowth from the carpellary leaf. Robert Brown was the first to give a clear description of the morphology of the Abietineous cone in which carpels bear naked ovules; he recognized gymnospermy as an important distinguishing feature in conifers as well as in cycads. Another view is to regard the cone as an inflorescence, each carpellary scale being a bract bearing in its axil a shoot the axis of which has not been developed; the seminiferous scale is believed to represent either a single leaf or a fused pair of leaves belonging to the partially suppressed axillary shoot. In 1869 van Tieghem laid stress on anatomical evidence as a key to the morphology of the cone-scales; he drew attention to the fact that the collateral vascular bundles of the seminiferous scale are inversely orientated as compared with those of the carpellary scale; in the latter the xylem of each bundle is next the upper surface, while in the seminiferous scale the phloem occupies that position. The conclusion drawn from this was that the seminiferous scale (fig. 15, B, Sc) is the first and only leaf of an axillary shoot (b) borne on that side of the shoot, the axis of which is suppressed, opposite the subtending bract (fig. 15, A, B, C, Br). Another view is to apply to the seminiferous scale an explanation similar to that suggested by von Mohl in the case of the double needle of Sciadopitys, and to consider the seed-bearing scale as being made up of a pair of leaves (fig. 15, A, a, a) of an axillary shoot (b) fused into one by their posterior margins (fig. 15, A). The latter view receives support from abnormal cones in which carpellary scales subtend axillary shoots, of which the first two leaves (fig. 15, C, l1, l1) are often harder and browner than the others; forms have been described transitional between axillary shoots, in which the leaves are separate, and others in which two of the leaves are more or less completely fused. In a young cone the seminiferous scale appears as a hump of tissue at the base or in the axil of the carpellary scale, but Celakovský, a strong supporter of the axillary-bud theory, attaches little or no importance to this kind of evidence, regarding the present manner of development as being merely an example of a short cut adopted in the course of evolution, and replacing the original production of a branch in the axil of each carpellary scale. Eichler, one of the chief supporters of the simpler view, does not recognize in the inverse orientation of the vascular bundles an argument in support of the axillary-bud theory, but points out that the seminiferous scale, being an outgrowth from the surface of the carpellary scale, would, like outgrowths from an ordinary leaf, naturally have its bundles inversely orientated. In such cone-scales as show little or no external indication of being double in origin, e.g. Araucaria (fig. 15, D) Sequoia, &c., there are always two sets of bundles; the upper set, having the phloem uppermost, as in the seminiferous scale of Abies or Pinus, are regarded as belonging to the outgrowth from the carpellary scale and specially developed to supply the ovules. Monstrous cones are fairly common; these in some instances lend support to the axillary-bud theory, and it has been said that this theory owes its existence to evidence furnished by abnormal cones. It is difficult to estimate the value of abnormalities as evidence bearing on morphological interpretation; the chief danger lies perhaps in attaching undue weight to them, but there is also a risk of minimizing their importance. Monstrosities at least demonstrate possible lines of development, but when the abnormal forms of growth in various directions are fairly evenly balanced, trustworthy deductions become difficult. The occurrence of buds in the axils of carpellary scales may, however, simply mean that buds, which are usually undeveloped in the axils of sporophylls, occasionally afford evidence of their existence. Some monstrous cones lend no support to the axillary-bud theory. In Larix the axis of the cone often continues its growth; similarly in Cephalotaxus the cones are often proliferous. (In rare cases the proliferated portion produces male flowers in the leaf-axils.) In Larix the carpellary scale may become leafy, and the seminiferous scale may disappear. Androgynous cones may be produced, as in the cone of Pinus rigida (fig. 16), in which the lower part bears stamens and the upper portion carpellary and seminiferous scales. An interesting case has been figured by Masters, in which scales of a cone of Cupressus Lawsoniana bear ovules on the upper surface and stamens on the lower face. One argument that has been adduced in support of the axillary bud theory is derived from the Palaeozoic type Cordaites, in which each ovule occurs on an axis borne in the axil of a bract. The whole question is still unsolved, and perhaps insoluble. It may be that the interpretation of the female cone of the Abietineae as an inflorescence, which finds favour with many botanists, cannot be applied to the cones of Agathis and Araucaria. Without expressing any decided opinion as to the morphology of the double cone-scale of the Abietineae, preference may be felt in favour of regarding the cone-scale of the Araucarieae as a simple carpellary leaf bearing a single ovule. A discussion of this question may be found in a paper on the Araucarieae by Seward and Ford, published in the Transactions of the Royal Society of London (1906). Cordaites is an extinct type which in certain respects resembles Ginkgo, cycads and the Araucarieae, but its agreement with true conifers is probably too remote to justify our attributing much weight to the bearing of the morphology of its female flowers on the interpretation of that of the Coniferae. The greater simplicity of the Eichler theory may prejudice us in its favour; but, on the other hand, the arguments advanced in favour of the axillary-bud theories are perhaps not sufficiently cogent to lead us to accept an explanation based chiefly on the uncertain evidence of monstrosities.

Fig. 16.—Abnormal Cone of Pinus rigida. (After Masters.)

A pollen-grain when first formed from its mother-cell consists of a single cell; in this condition it may be carried to the nucellus of the ovule (e.g. Taxus, Cupressus, &c.), or more usually (Pinus, Larix, &c.) it reaches maturity before the dehiscence Micro-spores and megaspores. of the microsporangium. The nucleus of the microspore divides and gives rise to a small cell within the large cell, a second small cell is then produced; this is the structure of the ripe pollen-grain in some conifers (Taxus, &c.). The large cell grows out as a pollen-tube; the second of the two small cells (body-cell) wanders into the tube, followed by the nucleus of the first small cell (stalk-cell). In Taxus the body-cell eventually divides into two, in which the products of division are of unequal size, the larger constituting the male generative cell, which fuses with the nucleus of the egg-cell. In Juniperus the products of division of the