Page:EB1911 - Volume 13.djvu/139

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
126
HEARING


while a complex tone, although occurring in the same duration of time, will cause the drum-head to move out and in in a much more complicated manner. The complex movement will be conveyed to the base of the stapes, thence to the vestibule, and thence to the cochlea, in which we find the ductus cochlearis containing the organ of Corti. It is to be noted also that the parts in the cochlea are so small as to constitute only a fraction of the wave-length of most tones audible to the human ear. Now it is evident that the cochlea must act either as a whole, all the nerve fibres being affected by any variations of pressure, or the nerve fibres may have a selective action, each fibre being excited by a wave of a definite period, or there may exist small vibratile bodies between the nerve filaments and the pressures sent into the organ. The last hypothesis gives the most rational explanation of the phenomena, and on it is founded a theory generally accepted and associated with the names of Thomas Young and Hermann Helmholtz. It may be shortly stated as follows:—

“(1) In the cochlea there are vibrators, tuned to frequencies within the limits of hearing, say from 30 to 40,000 or 50,000 vibs. per second. (2) Each vibrator is capable of exciting its appropriate nerve filament or filaments, so that a nervous impulse, corresponding to the frequency of the vibrator, is transmitted to the brain—not corresponding necessarily, as regards the number of nervous impulses, but in such a way that when the impulses along a particular nerve filament reach the brain, a state of consciousness is aroused which does correspond with the number of the physical stimuli and with the period of the auditory vibrator. (3) The mass of each vibrator is such that it will be easily set in motion, and after the stimulus has ceased it will readily come to rest. (4) Damping arrangements exist in the ear, so as quickly to extinguish movements of the vibrators. (5) If a simple tone falls on the ear, there is a pendular movement of the base of the stapes, which will affect all the parts, causing them to move; but any part whose natural period is nearly the same as that of the sound will respond on the principle of sympathetic resonance, a particular nerve filament or nerve filaments will be affected, and a sensation of a tone of definite pitch will be experienced, thus accounting for discrimination in pitch. (6) Intensity or loudness will depend on the amplitude of movement of the vibrating body, and consequently on the intensity of nerve stimulation. (7) If a compound wave of pressure be communicated by the base of the stapes, it will be resolved into its constituents by the vibrators corresponding to tones existing in it, each picking out its appropriate portion of the wave, and thus irritating corresponding nerve filaments, so that nervous impulses are transmitted to the brain, where they are fused in such a way as to give rise to a sensation of a particular quality or character, but still so imperfectly fused that each constituent, by a strong effort of attention, may be specially recognized” (article “Ear,” by M‘Kendrick, Schäfer’s Text-Book, loc. cit.).

The structure of the ductus cochlearis meets the demands of this theory, it is highly differentiated, and it can be shown that in it there are a sufficient number of elements to account for the delicate appreciation of pitch possessed by the human ear, and on the basis that the highly trained ear of a violinist can detect a difference of 1/64th of a semitone (M‘Kendrick, Trans. Roy. Soc. Ed., 1896, vol. xxxviii. p. 780; also Schäfer’s Text-Book, loc. cit.). Measurements of the cochlea have also shown such differentiation as to make it difficult to imagine that it can act as a whole. A much less complex organ might have served this purpose (M‘Kendrick, op. cit.). The following table, given by Retzius (Das Gehörorgan der Wirbelthiere, Bd. ii. S. 356), shows differentiations in the cochlea of man, the cat and the rabbit, all of which no doubt hear tones, although in all probability they have very different powers of discrimination:—

  Man. Cat. Rabbit.
Ear-teeth 2,490 2,430 1,550
Holes in habenula for nerves 3,985 2,780 1,650
Inner rods of Corti’s organ 5,590 4,700 2,800
Outer rods of Corti’s organ 3,848 3,300 1,900
Inner hair-cells (one row) 3,487 2,600 1,600
Outer hair-cells (several rows) 11,750 9,900 6,100
Fibres in basilar membrane 23,750 15,700 10,500

7. Dissonance.—The theory can also be used to explain dissonance. When two tones sufficiently near in pitch are simultaneously sounded, beats are produced. If the beats are few in number they can be counted, because they give rise to separate and distinct sensations; but if they are numerous they blend so as to give roughness or dissonance to the interval. The roughness or dissonance is most disagreeable with about 33 beats falling on the ear per second. When two compound tones are sounded, say a minor third on a harmonium in the lower part of the keyboard, then we have beats not only between the primaries, but also between the upper partials of each of the primaries. The beating distance may, for tones of medium pitch, be fixed at about a minor third, but this interval will expand for intervals on low tones and contract for intervals on high ones. This explains why the same interval in the lower part of the scale may give slow beats that are not disagreeable, while in the higher part it may cause harsh and unpleasant dissonance. The partials up to the seventh are beyond beating distance, but above this they come close together. Consequently instruments (such as tongues, or reeds) that abound in upper partials cause an intolerable dissonance if one of the primaries is slightly out of tune. Some intervals are pleasant and satisfying when produced on instruments having few partials in their tones. These are concords. Others are less so, and they may give rise to an uncomfortable sensation. These are discords. In this way unison, 1/1, minor third 6/5, major third 5/4, fourth 4/3, fifth 3/2, minor sixth 8/5, major sixth 5/3 and octave 2/1, are all concords; while a second 9/8, minor seventh 16/9 and major seventh 15/8, are discords. Helmholtz compares the sensation of dissonance to that of a flickering light on the eye. “Something similar I have found to be produced by simultaneously stimulating the skin, or margin of the lips, by bristles attached to tuning-forks giving forth beats. If the frequency of the forks is great, the sensation is that of a most disagreeable tickling. It may be that the instinctive effort at analysis of tones close in pitch causes the disagreeable sensation” (Schäfer’s Text-Book, op. cit. p. 1187).

8. Other Theories.—In 1865 Rennie objected to the analysis theory, and urged that the cochlea acted as a whole (Ztschr. f. rat. Med., Dritte Reihe, Bd. xxiv. Heft 1, S. 12-64). This view was revived by Voltolini (Virchow’s Archiv, Bd. c. S. 27) some years later, and in 1886 it was urged by E. Rutherford (Rep. Brit. Assoc. Ad. Sc., 1886), who compared the action of the cochlea to that of a telephone plate. According to this theory, all the hairs of the auditory cells vibrate to every note, and the hair-cells transform sound vibrations into nerve vibrations or impulses, similar in frequency, amplitude and character to the sound vibrations. There is no analysis in the peripheral organ. A. D. Waller, in 1891 (Proc. Physiol. Soc., Jan. 20, 1891) suggested that the basilar membrane as a whole vibrates to every note, thus repeating the vibrations of the membrana tympani; and since the hair-cells move with the basilar membrane, they produce what may be called pressure patterns against the tectorial membranes, and filaments of the auditory nerve are stimulated by these pressures. Waller admits a certain degree of peripheral analysis, but he relegates ultimate analysis to the brain. These theories, dispensing with peripheral analysis, leave out of account the highly complex structure of the cochlea, or, in other words, they assign to that structure a comparatively simple function which could be performed by a simple membrane capable of vibrating. We find that the cochlea becomes more elaborate as we ascend the scale of animals, until in man, who possesses greater powers of analysis than any other being, the number of hair-cells, fibres of the basilar membrane and arches of Corti are all much increased in number (see Retzius’s table, supra). The principle of sympathetic resonance appears, therefore, to offer the most likely solution of the problem. Hurst’s view is that with each movement of the stapes a wave is generated which travels up the scala vestibuli, through the helicotrema into the scala tympani and down the latter to the fenestra rotunda. The wave, however, is not merely a movement of the basilar membrane, but an actual movement of fluid or a transmission of pressure. As the one wave ascends while the other descends, a pressure of the basilar membrane occurs at the point where they meet; this causes the basilar membrane to move towards the tectorial membrane, forcing this membrane suddenly against the apices of the hair-cells, thus irritating the nerves. The point at which the waves meet will depend on the time interval between the waves (Hurst, “A New Theory of Hearing,” Trans. Biol. Soc. Liverpool, 1895, vol. ix. p. 321). More recently Max Mayer has advanced a theory somewhat similar. He supposes that with each movement of the stapes corresponding to a vibration, a wave travels up the scala vestibuli, pressing the basilar membrane downwards. As it meets with resistance in passing upwards, its amplitude therefore diminishes, and in this way the distance up the scala through which the wave progresses will be determined by its amplitude. The wave in its progress irritates a certain number of nerve terminations, consequently feeble tones will irritate only those nerve fibres that are near the fenestra ovalis, while stronger tones will pass farther up and irritate a larger number of nerve fibres the same number of times per unit of time. Pitch, according to this view, depends on the number of stimuli per second, while loudness depends on the number of nerve fibres irritated. Mayer also applies the theory to the explanation of the powers of the cochlea as an analyser, by supposing that with a compound tone these are at maxima and minima of stimulation. As the compound wave travels up the scala, portions of the wave corresponding to maxima and minima die away in consecutive series, until only a maximum and minimum are left; and, finally, as the wave travels farther, these also disappear. With each maximum and minimum different parts of the basilar membrane are affected, and affected a different number of times per second, according to the frequencies of the partials existing in the compound tone. Thus with a fifth, 2 : 3, there are three maxima and three minima; but the compound tone is resolved into three tones having vibration frequencies in the ratio of 3 : 2 : 1. According to Mayer, we actually hear when a fifth is sounded tones of the relationship of 3 : 2 : 1, the last (1) being the differential tone. He holds, also, that combinational tones are entirely subjective (Max Mayer, Ztschr. f. Psych. und Phys. d. Sinnesorgane, Leipzig, Bd. xvi. and xvii.; also Verhandl. d. physiolog. Gesellsch. zu Berlin, Feb. 18, 1898, S. 49). Two fatal objections can be urged to these theories, namely, first, it is impossible to conceive of minute waves following each other in