Page:EB1911 - Volume 13.djvu/157

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
144
HEAT
[MECHANICAL THEORY OF HEAT


Paris, 1832, 14, p. 153), who also made use of Watt’s indicator diagram for the first time in discussing physical problems. Clapeyron gave the general expressions for the latent heat of a vapour, and for the latent heat of isothermal expansion of any substance, in terms of Carnot’s function, employing the notation of the calculus. The expressions he gave are the same in form as those in use at the present day. He also gave the general expression for Carnot’s function, and endeavoured to find its variation with temperature; but having no better data, he succeeded no better than Carnot. Unfortunately, in describing Carnot’s cycle, he assumed the caloric theory of heat, and made some unnecessary mistakes, which Carnot (who, we now know, was a believer in the mechanical theory) had been very careful to avoid. Clapeyron directs one to compress the gas at the lower temperature in contact with the body B until the heat disengaged is equal to that which has been absorbed at the higher temperature.[1] He assumes that the gas at this point contains the same quantity of heat as it contained in its original state at the higher temperature, and that, when the body B is removed, the gas will be restored to its original temperature, when compressed to its initial volume. This mistake is still attributed to Carnot, and regarded as a fatal objection to his reasoning by nearly all writers at the present day.

18. Mechanical Theory of Heat.—According to the caloric theory, the heat absorbed in the expansion of a gas became latent, like the latent heat of vaporization of a liquid, but remained in the gas and was again evolved on compressing the gas. This theory gave no explanation of the source of the motive power produced by expansion. The mechanical theory had explained the production of heat by friction as being due to transformation of visible motion into a brisk agitation of the ultimate molecules, but it had not so far given any definite explanation of the converse production of motive power at the expense of heat. The theory could not be regarded as complete until it had been shown that in the production of work from heat, a certain quantity of heat disappeared, and ceased to exist as heat; and that this quantity was the same as that which could be generated by the expenditure of the work produced. The earliest complete statement of the mechanical theory from this point of view is contained in some notes written by Carnot, about 1830, but published by his brother (Life of Sadi Carnot, Paris, 1878). Taking the difference of the specific heats to be .078, he estimated the mechanical equivalent at 370 kilogrammetres. But he fully recognized that there were no experimental data at that time available for a quantitative test of the theory, although it appeared to afford a good qualitative explanation of the phenomena. He therefore planned a number of crucial experiments such as the “porous plug” experiment, to test the equivalence of heat and motive power. His early death in 1836 put a stop to these experiments, but many of them have since been independently carried out by other observers.

The most obvious case of the production of work from heat is in the expansion of a gas or vapour, which served in the first instance as a means of calculating the ratio of equivalence, on the assumption that all the heat which disappeared had been transformed into work and had not merely become latent. Marc Séguin, in his De l’influence des chemins de fer (Paris, 1839), made a rough estimate in this manner of the mechanical equivalent of heat, assuming that the loss of heat represented by the fall of temperature of steam on expanding was equivalent to the mechanical effect produced by the expansion. He also remarks (loc. cit. p. 382) that it was absurd to suppose that “a finite quantity of heat could produce an indefinite quantity of mechanical action, and that it was more natural to assume that a certain quantity of heat disappeared in the very act of producing motive power.” J. R. Mayer (Liebig’s Annalen, 1842, 42, p. 233) stated the equivalence of heat and work more definitely, deducing it from the old principle, causa aequat effectum. Assuming that the sinking of a mercury column by which a gas was compressed was equivalent to the heat set free by the compression, he deduced that the warming of a kilogramme of water 1° C. would correspond to the fall of a weight of one kilogramme from a height of about 365 metres. But Mayer did not adduce any fresh experimental evidence, and made no attempt to apply his theory to the fundamental equations of thermodynamics. It has since been urged that the experiment of Gay-Lussac (1807), on the expansion of gas from one globe to another (see above, § 11), was sufficient justification for the assumption tacitly involved in Mayer’s calculation. But Joule was the first to supply the correct interpretation of this experiment, and to repeat it on an adequate scale with suitable precautions. Joule was also the first to measure directly the amount of heat liberated by the compression of a gas, and to prove that heat was not merely rendered latent, but disappeared altogether as heat, when a gas did work in expansion.

19. Joule’s Determinations of the Mechanical Equivalent.—The honour of placing the mechanical theory of heat on a sound experimental basis belongs almost exclusively to J. P. Joule, who showed by direct experiment that in all the most important cases in which heat was generated by the expenditure of mechanical work, or mechanical work was produced at the expense of heat, there was a constant ratio of equivalence between the heat generated and the work expended and vice versa. His first experiments were on the relation of the chemical and electric energy expended to the heat produced in metallic conductors and voltaic and electrolytic cells; these experiments were described in a series of papers published in the Phil. Mag., 1840–1843. He first proved the relation, known as Joule’s law, that the heat produced in a conductor of resistance R by a current C is proportional to C2R per second. He went on to show that the total heat produced in any voltaic circuit was proportional to the electromotive force E of the battery and to the number of equivalents electrolysed in it. Faraday had shown that electromotive force depends on chemical affinity. Joule measured the corresponding heats of combustion, and showed that the electromotive force corresponding to a chemical reaction is proportional to the heat of combustion of the electrochemical equivalent. He also measured the E.M.F. required to decompose water, and showed that when part of the electric energy EC is thus expended in a voltameter, the heat generated is less than the heat of combustion corresponding to EC by a quantity representing the heat of combustion of the decomposed gases. His papers so far had been concerned with the relations between electrical energy, chemical energy and heat which he showed to be mutually equivalent. The first paper in which he discussed the relation of heat to mechanical power was entitled “On the Calorific Effects of Magneto-Electricity, and on the Mechanical Value of Heat” (Brit. Assoc., 1843; Phil. Mag., 23, p. 263). In this paper he showed that the heat produced by currents generated by magneto-electric induction followed the same law as voltaic currents. By a simple and ingenious arrangement he succeeded in measuring the mechanical power expended in producing the currents, and deduced the mechanical equivalent of heat and of electrical energy. The amount of mechanical work required to raise 1 ℔ of water 1° F. (1 B.Th.U.), as found by this method, was 838 foot-pounds. In a note added to the paper he states that he found the value 770 foot-pounds by the more direct method of forcing water through fine tubes. In a paper “On the Changes of Temperature produced by the Rarefaction and Condensation of Air” (Phil. Mag., May 1845), he made the first direct measurements of the quantity of heat disengaged by compressing air, and also of the heat absorbed when the air was allowed to expand against atmospheric pressure; as the result he deduced the value 798 foot-pounds for the mechanical equivalent of 1 B.Th.U. He also showed that there was no appreciable absorption of heat when air was allowed to expand in such a manner as not to develop mechanical power, and he pointed out that the mechanical equivalent of heat could not be satisfactorily deduced from

  1. It was for this reason that Professor W. Thomson (Lord Kelvin) stated (Phil. Mag., 1852, 4) that “Carnot’s original demonstration utterly fails,” and that he introduced the “corrections” attributed to James Thomson and Clerk Maxwell respectively. In reality Carnot’s original demonstration requires no correction.