Page:EB1911 - Volume 13.djvu/168

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
WIEN’S DISPLACEMENT LAW]
HEAT
155


readily detected by laboratory experiments in a 4 ft. tube, without the aid of spectrum analysis.

41. Relation between Radiation and Temperature.—Assuming, in accordance with the reasoning of Balfour Stewart and Kirchhoff, that the radiation stream inside an impervious enclosure at a uniform temperature is independent of the nature of the walls of the enclosure, and is the same for all substances at the same temperature, it follows that the full stream of radiation in such an enclosure, or the radiation emitted by an ideal black body or full radiator, is a function of the temperature only. The form of this function may be determined experimentally by observing the radiation between two black bodies at different temperatures, which will be proportional to the difference of the full radiation streams corresponding to their several temperatures. The law now generally accepted was first proposed by Stefan as an empirical relation. Tyndall had found that the radiation from a white hot platinum wire at 1200° C. was 11.7 times its radiation when dull red at 525° C. Stefan (Wien. Akad. Ber., 1879, 79, p. 421) noticed that the ratio 11.7 is nearly that of the fourth power of the absolute temperatures as estimated by Tyndall. On making the somewhat different assumption that the radiation between two bodies varied as the difference of the fourth powers of their absolute temperatures, he found that it satisfied approximately the experiments of Dulong and Petit and other observers. According to this law the radiation between a black body at a temperature θ and a black enclosure or a black radiometer at a temperature θ0 should be proportional to (θ4θ04). The law was very simple and convenient in form, but it rested so far on very insecure foundations. The temperatures given by Tyndall were merely estimated from the colour of the light emitted, and might have been some hundred degrees in error. We now know that the radiation from polished platinum is of a highly selective character, and varies more nearly as the fifth power of the absolute temperature. The agreement of the fourth power law with Tyndall’s experiment appears therefore to be due to a purely accidental error in estimating the temperatures of the wire. Stefan also found a very fair agreement with Draper’s observations of the intensity of radiation from a platinum wire, in which the temperature of the wire was deduced from the expansion. Here again the apparent agreement was largely due to errors in estimating the temperature, arising from the fact that the coefficient of expansion of platinum increases considerably with rise of temperature. So far as the experimental results available at that time were concerned, Stefan’s law could be regarded only as an empirical expression of doubtful significance. But it received a much greater importance from theoretical investigations which were even then in progress. James Clerk Maxwell (Electricity and Magnetism, 1873) had shown that a directed beam of electromagnetic radiation or light incident normally on an absorbing surface should produce a mechanical pressure equal to the energy of the radiation per unit volume. A. G. Bartoli (1875) took up this idea and made it the basis of a thermodynamic treatment of radiation. P. N. Lebedew in 1900, and E. F. Nichols and G. F. Hull in 1901, proved the existence of this pressure by direct experiments. L. Boltzmann (1884) employing radiation as the working substance in a Carnot cycle, showed that the energy of full radiation at any temperature per unit volume should be proportional to the fourth power of the absolute temperature. This law was first verified in a satisfactory manner by Heinrich Schneebeli (Wied. Ann., 1884, 22, p. 30). He observed the radiation from the bulb of an air thermometer heated to known temperatures through a small aperture in the walls of the furnace. With this arrangement the radiation was very nearly that of a black body. Measurements by J. T. Bottomley, August Schleiermacher, L. C. H. F. Paschen and others of the radiation from electrically heated platinum, failed to give concordant results on account of differences in the quality of the radiation, the importance of which was not fully realized at first. Later researches by Paschen with improved methods verified the law, and greatly extended our knowledge of radiation in other directions. One of the most complete series of experiments on the relation between full radiation and temperature is that of O. R. Lummer and Ernst Pringsheim (Ann. Phys., 1897, 63, p. 395). They employed an aperture in the side of an enclosure at uniform temperature as the source of radiation, and compared the intensities at different temperatures by means of a bolometer. The fourth power law was well satisfied throughout the whole range of their experiments from −190° C. to 2300° C. According to this law, the rate of loss of heat by radiation R from a body of emissive power E and surface S at a temperature θ in an enclosure at θ0 is given by the formula

R = σES (θ4θ04),

where σ is the radiation constant. The absolute value of σ was determined by F. Kurlbaum using an electric compensation method (Wied. Ann., 1898, 65, p. 746), in which the radiation received by a bolometer from a black body at a known temperature was measured by finding the electric current required to produce the same rise of temperature in the bolometer. K. Ångstrom employed a similar method for solar radiation. Kurlbaum gives the value σ = 5.32 × 10−5 ergs per sq. cm. per sec. C. Christiansen (Wied. Ann., 1883, 19, p. 267) had previously found a value about 5% smaller, by observing the rate of cooling of a copper plate of known thermal capacity, which is probably a less accurate method.

42. Theoretical Proof of the Fourth Power Law.—The proof given by Boltzmann may be somewhat simplified if we observe that full radiation in an enclosure at constant temperature behaves exactly like a saturated vapour, and must therefore obey Carnot’s or Clapeyron’s equation given in section 17. The energy of radiation per unit volume, and the radiation-pressure at any temperature, are functions of the temperature only, like the pressure of a saturated vapour. If the volume of the enclosure is increased by any finite amount, the temperature remaining the same, radiation is given off from the walls so as to fill the space to the same pressure as before. The heat absorbed when the volume is increased corresponds with the latent heat of vaporization. In the case of radiation, as in the case of a vapour, the latent heat consists partly of internal energy of formation and partly of external work of expansion at constant pressure. Since in the case of full or undirected radiation the pressure is one-third of the energy per unit volume, the external work for any expansion is one-third of the internal energy added. The latent heat absorbed is, therefore, four times the external work of expansion. Since the external work is the product of the pressure P and the increase of volume V, the latent heat per unit increase of volume is four times the pressure. But by Carnot’s equation the latent heat of a saturated vapour per unit increase of volume is equal to the rate of increase of saturation-pressure per degree divided by Carnot’s function or multiplied by the absolute temperature. Expressed in symbols we have,

θ (dP/dθ) = L/V = 4P,

where (dP/dθ) represents the rate of increase of pressure. This equation shows that the percentage rate of increase of pressure is four times the percentage rate of increase of temperature, or that if the temperature is increased by 1%, the pressure is increased by 4%. This is equivalent to the statement that the pressure varies as the fourth power of the temperature, a result which is mathematically deduced by integrating the equation.

43. Wien’s Displacement Law.—Assuming that the fourth power law gives the quantity of full radiation at any temperature, it remains to determine how the quality of the radiation varies with the temperature, since as we have seen both quantity and quality are determinate. This question may be regarded as consisting of two parts. (1) How is the wave-length or frequency of any given kind of radiation changed when its temperature is altered? (2) What is the form of the curve expressing the distribution of energy between the various wave-lengths in the spectrum of full radiation, or what is the distribution of heat in the spectrum? The researches of Tyndall, Draper, Langley and other investigators had shown that while the energy of radiation of each frequency increased with rise of temperature, the maximum of intensity was shifted or displaced along the spectrum in the direction of shorter wave-lengths or higher frequencies. W. Wien (Ann. Phys., 1898, 58, p. 662), applying Doppler’s principle to the adiabatic compression of radiation in a perfectly reflecting enclosure, deduced that the wave-length of each constituent of the radiation should be shortened in proportion to the rise of temperature produced