to attempt a difficult discrimination between acquired and innate characters.
Acquired Characters.—Every character is the result of two sets of factors, those resident in the germinal material and those imposed from without. Our knowledge has taken us far beyond any such idea as the formation of a germinal material by the collection of particles from the adult organs and tissues (gemmules of C. Darwin). The inheritance of any character means the transmission in the germinal material of matter which, brought under the necessary external conditions, develops into the character of the parent. There is necessarily an acquired or epigenetic side to every character; but there is nothing in our knowledge of the actual processes to make necessary or even probable the supposition that the result of that factor in one generation appears in the germ-plasm of the subsequent generations, in those cases where an embryological development separates parent and offspring. The development of any normal, so-called “innate,” character, such as, say, the assumption of the normal human shape and relations of the frontal bone, requires the co-operation of many factors external to the developing embryo, and the absence of abnormal distorting factors. When we say that such an innate character is transmitted, we mean only that the germ-plasm has such a constitution that, in the presence of the epigenetic factors and the absence of abnormal epigenetic factors, the bone will appear in due course and in due form. If an abnormal epigenetic factor be applied during development, whether to the embryo in utero, to the developing child, or in after life, abnormality of some kind will appear in the bone, and such an abnormality is a good type of what is spoken of as an “acquired” character. Naturally such a character varies with the external stimulus and the nature of the material to which the stimulus is applied, and probability and observation lead us to suppose that as the germ-plasm of the offspring is similar to that of the parent, being a mass separated from the parent, abnormal epigenetic influences would produce results on the offspring similar to those which they produced on the parent. Scrutiny of very many cases of the supposed inheritance of acquired characters shows that they may be explained in this fashion—that is to say, that they do not necessarily involve any feature different in kind from what we understand to occur in normal development. The effects of increased use or of disuse on organs or tissues, the reactions of living tissues to various external influences, to bacteria, to bacterial or other toxins, or to different conditions of respiration, nutrition and so forth, we know empirically to be different in the case of different individuals, and we may expect that when the living matter of a parent responds in a certain way to a certain external stimulus, the living matter of the descendant will respond to similar circumstances in a similar fashion. The operation of similar influences on similar material accounts for a large proportion of the facts. In the important case of the transmission of disease from parent to offspring it is plain that three sets of normal factors may operate, and other cases of transmission must be subjected to similar scrutiny: (1) a child may inherit the anatomical and physiological constitution of either parent, and with that a special liability of failure to resist the attacks of a wide-spread disease; (2) the actual bacteria may be contained in the ovum or possibly in the spermatozoon; (3) the toxins of the disease may have affected the ovum, or the spermatozoon, or through the placenta the growing embryo. Obviously in the first two cases the offspring cannot be said in any strict sense to have inherited the disease; in the last case, the theoretical nomenclature is more doubtful, but it is at least plain that no inexplicable factor is involved.
It is to be noticed, however, that “Lamarckians” and “Neo-Lamarckians” in their advocacy of an inheritance of “acquired characters” make a theoretical assumption of a different kind, which applies equally to “acquired” and to “innate” characters. They suppose that the result of the epigenetic factors is reflected on the germ-plasm in such a mode that in development the products would display the same or a similar character without the co-operation of the epigenetic factors on the new individual, or would display the result in an accentuated form if with the renewed co-operation of the external factors. Such an assumption presents its greatest theoretical difficulty if, with Weismann, we suppose the germ-plasm to be different in kind from the general soma-plasm, and its least theoretical difficulty if, with Hertwig, we suppose the essential matter of the reproductive cells to be similar in kind to the essential substance of the general body cells. But, apart from the differences between such theories, it supposes, in all cases where an embryological development lies between parent and descendant, the existence of a factor towards which our present knowledge of the actual processes gives us no assistance. The separated hereditary mass does not contain the organs of the adult; the Lamarckian factor would involve the translation of the characters of the adult back into the characters of the germ-cell in such a fashion that when the germ-cell developed these characters would be re-translated again into those which originally had been produced by co-operation between germ-plasm characters and epigenetic factors. In the present state of our knowledge the theoretical difficulty is not fatal to the Lamarckian supposition; it does no more than demand a much more careful scrutiny of the supposed cases. Such a scrutiny has been going on since Weismann first raised the difficulty, and the present result is that no known case has appeared which cannot be explained without the Lamarckian factor, and the vast majority of cases have been resolved without any difficulty into the ordinary events of which we have full experience. Taking the empirical data in detail, it would appear first that the effects of single mutilations are not inherited. The effects of long-continued mutilations are not inherited, but Darwin cites as a possible case the Mahommedans of Celebes, in whom the prepuce is very small. C. E. Brown-Séquard thought that he had shown in the case of guinea-pigs the inheritance of the results of nervous lesions, but analyses of his results leave the question extremely doubtful. The inheritance of the effects of use and disuse is not proved. The inheritance of the effects of changed conditions of life is quite uncertain. Nägeli grew Alpine plants at Munich, but found that the change was produced at once and was not increased in a period of thirteen years. Alphonse de Candolle starved plants, with the result of producing better blooms, and found that seedlings from these were also above the average in luxuriance of blossom, but in these experiments the effects of selection during the starvation, and of direct effect on the nutrition of the seeds, were not eliminated. Such results are typical of the vast number of experiments and observations recorded. The empirical issue is doubtful, with a considerable balance against the supposed inheritance of acquired characters.
Empirical Study of Effects of Amphimixis.—Inheritance is theoretically possible from each parent and from the ancestry of each. In considering the total effect it is becoming customary to distinguish between “blended” inheritance, where the offspring appears in respect of any character to be intermediate between the conditions in the parents; “prepotent” inheritance, where one parent is supposed to be more effective than the other in stamping the offspring (thus, for instance, Negroes, Jews and Chinese are stated to be prepotent in crosses); “exclusive” inheritance, where the character of the offspring is definitely that of one of the parents. Such a classification depends on the interpretation of the word character, and rests on no certain grounds. An apparently blended character or a prepotent character may on analysis turn out to be due to the inheritance of a certain proportion of minuter characters derived exclusively from either parent. H. de Vries and later on a number of other biologists have advanced the knowledge of heredity in crosses by carrying out further the experimental and theoretical work of Gregor Mendel (see Mendelism and Hybridism), and results of great practical importance to breeders have already been obtained. These experiments and results, however, appear to relate exclusively to sexual reproduction and almost entirely to the crossing of artificial varieties of animals and plants. So far as they go, they point strongly to the occurrence of alternate inheritance instead of blended inheritance in the case of artificial