Page:EB1911 - Volume 13.djvu/444

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
428
HEXAPODA
[GROWTH AND CHANGE

quantity of the food taken is often radically different. (2) A wingless, sedentary creature is turned into a winged one with superlative powers of aerial movement. (3) An individual in which the reproductive organs and powers are functionally absent becomes one in which these structures and powers are the only reason for existence, for the great majority of insects die after a brief period of reproduction. These changes are in the higher insects so extreme that it is difficult to imagine how they could be increased. In the case of the common drone-fly, Eristalis tenax, the individual, from a sedentary maggot living in filth, without any relations of sex, and with only unimportant organs for the ingestion of its foul nutriment, changes to a creature of extreme alertness, with magnificent powers of flight, living on the products of the flowers it frequents, and endowed with highly complex sexual structures.

After Westwood, Modern Classification.

Fig. 24.—Campodeiform Larva of a Ground-Beetle (Aepus marinus).

Magnified.

Forms of Larva.—The unlikeness of the young insect to its parent is one of the factors that necessitates metamorphosis. It is instructive, further, to trace among metabolic insects an increase in the degree of this dissimilarity. An adult Hexapod is provided with a firm, well-chitinized cuticle and six conspicuous jointed legs. Many larval Hexapods might be defined in similar general terms, unlike as they are to their parents in most points of detail. Examples of such are to be seen in the grubs of may-flies, dragon-flies, lacewing-flies and ground-beetles (fig. 24). This type of active, armoured larva—often bearing conspicuous feelers on the head and long jointed cercopods on the tenth abdominal segment—was styled campodeiform by F. Brauer (1869), on account of its likeness in shape to the bristle-tail Campodea. As an extreme contrast to this campodeiform type, we take the maggot of the house-fly (fig. 25)—a vermiform larva, with soft, white, feebly-chitinized cuticle and without either head-capsule or legs. Between these two extremes, numerous intermediate forms can be traced: the grub (wireworm) of a click-beetle, with narrow elongate well-armoured body, but with the legs very short; the grub of a chafer, with the legs fairly developed, but with the cuticle of all the trunk-segments soft and feebly chitinized; the well-known caterpillar of a moth (fig. 21, e) or saw-fly, with its long cylindrical body, bearing the six shortened thoracic legs and a variable number of pairs of “pro-legs” on the abdomen (this being the eruciform type of larva); the soft, white, wood-boring grub of a longhorn-beetle or of the saw-fly Sirex, with its stumpy vestiges of thoracic legs; the large-headed but entirely legless, fleshy grub of a weevil; and the legless larva, with greatly reduced head, of a bee. The various larvae of the above series, however, have all a distinct head-capsule, which is altogether wanting in the degraded fly maggot. These differences in larval form depend in part on the surroundings among which the larva finds itself after hatching; the active, armoured grub has to seek food for itself and to fight its own battles, while the soft, defenceless maggot is provided with abundant nourishment. But in general we find that elaboration of imaginal structure is associated with degradation in the nature of the larva, eruciform and vermiform larvae being characteristic of the highest orders of the Hexapoda, so that unlikeness between parent and offspring has increased with the evolution of the class.

After Howard, Ent. Bull. 4, n. s. (U.S. Dept. Agr.).

Fig. 25.—Vermiform Larva (maggot) of House-fly (Musca domestica). Magnified. b, spiracle on prothorax; c, protruded head region; d, tail-end with functional spiracles; e, f, head region with mouth hooks protruded; g, hooks retracted; h, eggs. All magnified.

Hypermetamorphosis.—Among a few of the beetles or Coleoptera (q.v.), and also in the neuropterous genus Mantispa, are found life-histories in which the earliest instar is campodeiform and the succeeding larval stages eruciform. These later stages, comprising the greater part of the larval history, are adapted for an inquiline or a parasitic life, where shelter is assured and food abundant, while the short-lived, active condition enables the newly-hatched insect to make its way to the spot favourable for its future development, clinging, for example, in the case of an oil-beetle’s larva, to the hairs of a bee as she flies towards her nest. The presence of the two successive larval forms in the life-history constitutes what is called hypermetamorphosis. Most significant is the precedence of the eruciform by the campodeiform type. In conjunction with the association mentioned above of the most highly developed imaginal with the most degraded larval structure, it indicates clearly that the active, armoured grub preceded the sluggish soft-skinned caterpillar or maggot in the evolution of the Hexapoda.

Nymph.—The term nymph is applied by many writers on the Hexapoda to all young forms of insects that are not sufficiently unlike their parents to be called larvae. Other writers apply the term to a “free” pupa (see infra). It is in wellnigh universal use for those instars of ametabolous and hemimetabolous insects in which the external wing-rudiments have become conspicuous (fig. 27). The mature dragon-fly nymph, for example, makes its way out of the water in which the early stages have been passed and, clinging to some water-plant, undergoes the final ecdysis that the imago may emerge into the air. Like most ametabolic and hemimetabolic Hexapoda, such nymphs continue to move and feed throughout their lives. But examples are not wanting of a more or less complete resting habit during the latest nymphal instar. In some cicads the mature nymph ceases to feed and remains quiescent within a pillar-shaped earthen chamber. The nymph of a thrips-insect (Thysanoptera) is sluggish, its legs and wings being sheathed by a delicate membrane, while the nymph of the male scale-insect rests enclosed beneath a waxy covering.

Sub-imago.—Among the Hexapoda generally there is no subsequent ecdysis nor any further growth after the assumption of the winged state. The may-flies, however, offer a remarkable exception to this rule. After a prolonged aquatic larval and nymphal life-history, the winged insect appears as a sub-imago, whence, after the casting of a delicate cuticle, the true imago emerges.

Pupa.—In the metabolic Hexapoda the resting pupal instar shows externally the wings and other characteristic imaginal organs which have been gradually elaborated beneath the larval cuticle. It is usual to distinguish between the free pupae (fig. 26, b)—of Coleoptera and Hymenoptera, for example—in which the wings, legs and other appendages are not fixed to the trunk, and the obtect pupae (fig. 21, d)—such as may be noticed in the majority of the Lepidoptera—whose appendages are closely and immovably pressed to the body by a general hardening and fusion of the cuticle. In the degree of mobility there is great diversity among pupae. A gnat pupa swims through the water by powerful strokes of its abdomen, while the caddis-fly pupa, in preparation for its final ecdysis, bites its way out of its subaqueous protective case and rises through the water, so that the fly may emerge into the air. Some pupae are thus more active than some nymphs; the essential character of a pupa is not therefore its passivity, but that it is the instar in which the wings first become evident externally.